
PIOTR FULMAŃSKI

NoSQL
Theory and examples

EARLY ACCESS VERSION
EDITION 1.0, OCTOBER 2021

SIMPLE INTRODUCTION SERIES

NoSQL. Theory and examples
SIMPLE INTRODUCTION SERIES

Copyright © 2021-2022, Piotr Fulmański
All rights reserved
www: https://fulmanski.pl
email: book@fulmanski.pl
GitHub: https://github.com/fulmanp/NoSQL-Theory-and-examples

Edition: 1
First published: 1.0, January 12, 2022 (planned)
This edition: 1.0, October 2021 (early access)
Build number: 202110302359

eBook (pdf, epub)
ISBN-13: 978-83-957405-0-3

https://fulmanski.pl
mailto:book@fulmanski.pl
https://github.com/fulmanp/NoSQL-Theory-and-examples

While the author has used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. The author makes no warranty,
express or implied, with respect to the material contained herein.

If any code samples, software or any other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Release Notes

(A – add, N – new, U – update)

Edition 1.0
release: July 2021

• Chapter: 9: Time series databases (A, U)

Edition 1.0
release: February 2021

• Chapter: 9: Time series databases (N)

Edition 1.0
release: January 2021

• Chapter: 10: Apache Pig (N)
• Change text highlighting (U)

Edition 1.0
release: October 2020, November 2020

• Fix layout

Edition 1.0
release: September 2020

• Migrate from iBooks Author to Pages as iBooks Author is no longer updated since
July 1, 2020.

• Preface (U)
• Chapter 1: SQL, NoSQL, NewSQL (U)
• Chapter 7: Graph stores (N)
• Appendix D: SQL recursive queries (N)

Edition 1.0
release: May 2020

• Chapter 1: SQL, NoSQL, NewSQL (U)
• Chapter 3: NoSQL (N)
• Chapter 4: Column family stores (N)
• Chapter 6: Document store (N)

• Appendix A: JSON (N)
• Appendix B: XML (N)
• Appendix C: HTTP (N)

Edition 1.0
release: April 2020

• Preface (N)
• Chapter 1: SQL, NoSQL, NewSQL (N)
• Chapter 2: SQL. Relational model (N)
• Chapter 3: Key-value stores (N)

Table of contents

Preface ...xi

SQL, NoSQL, NewSQL ...21

Data and database ...23

SQL ..29

Big Data – big problem with data ...41

NoSQL ...49

NewSQL ...61

Summary ...67

SQL Relational model ..77

Toward relational supremacy ...79

Relational theory key concepts ...93

Normal forms ..99

Transactional model and ACID ..111

Codd's relational rules ...119

Keep SQL in the mainstream ..125

Summary ..131

NoSQL ..133

Motivations ..135

BASE ..149

CAP theorem ..153

Consistency ..157

Summary ..161

Column family stores ...165

The origins ...167

v i i

Hadoop ..175

HBase ...181

Summary ...189

Working with HBase ..191

Key-value stores ..203

Basic ideas ...205

Key-value stores vs. relational databases 209

Essential features of key-value databases 213

Key is the key ...217

Values ..225

Summary ...229

Working with Riak ..231

Document stores ..243

Basic ideas ...245

Document stores vs. relational databases 253

Summary ...259

Working with Apache CouchDB – CRUD basics 261

Working with Apache CouchDB – querying 281

Graph stores ..305

Do we really need another one database type? 307

Basic ideas ...313

Graph stores design ..325

Summary ...331

Working with Gremlin ..335

Working with Neo4j ..353

Column databases ..371

Basic ideas ...373

Time series databases ..375

v i i i

Everything changes New trends of XXI century 377

Do we really need time series databases? 383

Data model ..397

Working with OpenTSDB ...409

Apache Pig ..411

What Apache Pig is ..413

Pig Latin ...417

Working examples – basic informations 441

Working examples – beyond basic ...457

Summary ...474

JSON ..475

Overview ..477

Syntax ..479

XML ...483

Overview ...485

Tools ..491

HTTP ..507

Overview ...509

Tools ...517

SQL recursive queries ..529

Common table expressions ...531

Recursive queries ..535

Bibliography ...543

Tables and figures ..557

i x

x

Preface
Who this book is for

This book is addressed to all the people who want to understand
what a NoSQL is and what were the reasons behind its arisen. It may
be good both for someone with no computer scientist background and
for those who have some IT experience but want to understand why the
tools they work every day looks this and no other way. I don’t want to
dive deep into details of specific technologies or solutions. Instead of
that, I want to explain why things are as they are. Whenever it is
possible a general way of thinking is presented. Just as you can't eat a
cookie only by reading about it, it will be difficult to understand NoSQL
without practical examples. Therefore, examples of the selected
databases basic usage are an integral part of presented
contents. I will skip all the details related to database features or
installation process that can be found on dedicated web pages. All
examples are intended to give basic understanding how to Create, Read,
Update and Delete data (so called CRUD set of operations). After
reading this book you should be able to:

• basic use of selected databases from the NoSQL family;

• choose the right base depending on the task to be solved;

• know the strengths and weaknesses of the proposed solutions, both
those based on SQL and NoSQL databases.

x i

Early access

This book is a work in progress, presented in early access version. Early
access allows to publish and share some ideas before the final version
appears. This way, participating in early access, you may contribute how
the final version will look like. English is not my native language and I
know that I make a lot of mistakes but I hope that text is more than
readable and at least a little bit understandable. I believe that everything
can be better and there is always a space for improvements. I can say
that the Toyota Way is the way I live and work focusing on continuous
improvement, and respect for people. That is why I would be very
grateful if you somehow contribute improving this book. Any
comments, corrections and suggestions are more than welcome. I write
this book not for myself but to share what I know with others, so help
me make it’s contents better.

If this book is buggy or not complete yet why it’s not free? Simply
because I need money to finish it and to make it better. Everything
costs. The most precious is time. I, as all other people, have to work to
live and to support my family. And this consumes most of my days.
Then I have a choice: play with kids or write a book. I choose playing
with kids. I don’t want to reduce a time spent with my family because I
don’t want to be a virtual parent. So I have just a little time for book. If I
could reduce my job engagement (from full-time to half-time) I could
spend more time on book.

I believe that there is no book like this on the market and I want to
make it better and better. I can do this. I don’t have to ask publisher if
they agree to prepare another version. If something deserves for
improvement I simply do this and publish right after that. Paying for a
book you allow me to spending more time on book without sacrificing
my family life. Having money I can pay for professional translation, text
correction or simply buy better images.

x i i

What will you learn in this book?

I don’t want to write this book and forget. My idea is to keep it as
accurate and up to date as it is only possible so you can expect updates
in a future even if I reach stable “final” version. As I wrote above, always
there is something to improve. As for now book covers the following
topics (chapter titles highlighted in red indicate finished or, if stated
explicitly, in progress content).

Preface This is what you are reading right now. Here I explain what
you can expect in this book. I also try to convince you to actively
participate in shaping it’s contents.

Chapter 1 SQL, NoSQL, NewSQL In this chapter a general overview of
a huge *SQL databases is given. I will try to answer for the question why
there are so many different families of databases. Are they really needed
or it is just a mindless rush? If we need them, what factors plays crucial
role? What was the main reasons behind the new databases types
invention? What profits do we have replacing one database by other? Is
it probable that one type will replace other?
This chapter introduces concepts that will be discussed in more details
in the following chapters (chapter 2 and 3).

Chapter 2 SQL. Relational model Although this book is about NoSQL
databases, it is good to have some reference point. Relational (SQL)
seems to be perfect choice because it is quite natural to consider every
novelty in context of a well known model used for many years. In this
chapter we will point out key features of SQL model, its strengths and
weakness.

Chapter 3 NoSQL In this chapter we will discuss when and why SQL is
not enough for business and IT enterprises. What factors plays crucial
role in nowadays system development. We will try to justify that NoSQL

x i i i

rising was a natural consequence of the changes taking place in the
world.

Chapter 4 Column family stores In this section a foundations of
column family stores will be given.

Chapter 5 Key-value stores In this section a foundations of key-value
stores will be given.

Chapter 6 Document stores In this section a foundations of document
stores will be given.

Chapter 7 Graph stores In this section a foundations of graph stores
will be given.

Chapter 8 Column databases In this section a foundations of column
databases will be given. (IN PROGRESS)

Chapter 9 Time series databases In this section a foundations of time
series databases will be given. (IN PROGRESS)

Chapter 10 Apache Pig In all previous chapters I talk about "classic"
NoSQL, being more precisely: about NoSQL Stores/Databases. But what
does it mean: database or store in our everyday practice? Do you care
about its internals, about its logical and/or physical data storage model?
Or rather you take care about what you can do and how you can do?
Saying the truth, if only we have an SQL-like language we can use to
operate on "something" then we will call this "something" a (relational)
database, even if, technically speaking, it would be something very
different than (relational) database. Some system don't have to be a
database to be used as a database. And this is the main thought in this
and further chapter: I will show you some systems which behaves like
database even though they are not databases. In most cases, no one calls
them NoSQL systems but it's seems to be a future of NoSQL systems:

x i v

SQL-like interface created over underlying sophisticated and versatile
storage system to work with any kind of data.

Appendix A: JSON

Appendix B: XML

Appendix C: HTTP

Appendix D: SQL recursive queries

What you will NOT learn in this book?

This book is not intended to be a user guide for a given NoSQL
database. Even if I use some of them I do this to show key features of a
whole class of databases, their pros and cons. Today everything changes
so fast that it may happen that database used in examples is no more
supported. Writing a book is a time consuming task and, especially in IT
area, some fact described at the beginning of the book ma be outdated
when author complete final chapters. It does not change the general
nature of the considerations contained in this book as I made an effort
to present base, universal and essential functionality which is quite
common among databases of a given type. That is why you will not
find a chapters devoted to installation or configuration (except
some simple cases when necessary).

The number of topics covered in this book is quit big, and it shouldn’t
surprise you that some of them are only announced. There is no way to
fully describe all of them. I don't think it's possible to know everything.
There's a tremendous amount of information we get every day because
the technology is evolving so fast. Let me know if you think that
some parts should be described in more details or in a
completely different way.

x v

Give this book a try, and please let me know what you think. Any
feedback is very much encouraged and welcomed! If you think that my
time is worth this effort, you can support what I’m doing now and help
me finalize this project. Please use email (book@fulmanski.pl) or
GitHub (https://github.com/fulmanp/NoSQL-Theory-and-examples)
to give your positive or negative, but in all cases constructive, feedback.

Thank you for your engagement.

Piotr Fulmański

x v i

mailto:book@fulmanski.pl
https://github.com/fulmanp/NoSQL-Theory-and-examples

Conventions used in this book

For your convenience I will use the following typographical convention:

Italic
Indicates new terms.

Italic
Indicates old terms but for some reason I want to distinguish them from
normal text flow, definitions, citations.

Constant width
Indicates source code, filenames, file extensions, variables, parameters,
etc.

Constant width
Indicates commands or any other text that you should type literally (as
it is given).

Constant width
Indicates parts of scripts or commands which you need to pay special
attention to.

Bold
Indicates statements which you need to pay special attention to.
Sometimes it is used in combination with previous styles, for example:

Constant width with bolded part  

This way I will mark for example crucial parameter in some important
command.

This is how source  
code is displayed

x v i i

This is how a terminal  
text is displayed with  
bolded command prompt.

S omething worth to remember or just one-sentence summary
of some part of a section or chapter.

NOTE

Note block

I use this block to give you some additional explanation or information,

possibly loosely related to a main text.

x v i i i

x i x

x x

CHAPTER 1

SQL, NoSQL, NewSQL

General overview of *SQL databases

• Why there are so many different families of databases?

• What factors were the main reason for NoSQL to appear?

• Is NoSQL going to replace SQL?

2 1

2 2

SECTION 1

Data and database

We can define database as an organized collection of data stored in
accordance with specific rules. In this sense postage stamps collection,
books stored in a shelf (in some systematic or chaotic way) or even kid's
cars collection are examples of databases. In practice we used to think
about databases in much more narrower and thus more useful sense.

First, we think about pure immaterial data – we store numbers, texts,
images and songs but not real objects. Probably because real objects are
much more harder to manipulate in an automatic way than sequences of
characters.

We define data as a set of values of qualitative or quantitative
variables (properties) describing some object or phenomenon.

Although the terms data, information and knowledge are often used
interchangeably, each of these terms has a distinct meaning. Data is a
dumb set of values. Nothing more. When the data is processed and
transformed in such a way that it becomes useful to the users, it is
known as information. So when data starts to "speak'', when something
valueless is turned into priceless, we have an information. Going further
with other data "transformations" we reach to DIKW (data, information,
knowledge, wisdom) pyramid. The DIKW pyramid shows that data,
produced by events, can be enriched with context to create
information, information can be supplied with meaning to create
knowledge and knowledge can be integrated to form wisdom, which
is at the top. There is a nice saying (by Miles Kington):

2 3

Knowledge is knowing a tomato is a fruit.
Wisdom is not putting it in a fruit salad.

And this is a true essence of the problem we are discuss.

As an example you can consider number 38. This is a pure number and
the only fact you can say about it is that it consist of three tens and eight
ones, but even that is not certain, as the number may not be in decimal
system. At this moment you can call 38 a data. If I will tell you, that
this number represents temperature, you will have a deeper
understanding of this pure number. I may add, that temperature in
kelvins and then you will know that it is rather cold or I may say, that
temperature of may body expressed in centigrade scale (Celsius degrees,
typically used in my country; 38 degree Celsius = 100.4 degree
Fahrenheit = 311.15 kelvin) which means I am sick and have a fever.
Now data becomes an information because you know what this
number means. Going further, if you combine this information with
observation how I behave, look and fill you will obtain a knowledge of
a certain disease. Wisdom is at the top of this data transformation
process and in this case explains all the steps we take when we notice 38
centigrade on a thermometer.

Different data forms required different storage methods. For data it is
enough to use a simple text file. Information is quite well saved in
relational databases or some simple NoSQL stores. Knowledge demands
more sophisticated system like graph databases or a search engine like
Elasticsearch.

NOTE

One data, many data...

The Latin word data is the plural of datum (en. (thing) given) neuter

past participle of dare (en. to give). In consequence, datum should be

2 4

used in the singular and data for plural, though, in non-specialist,

everyday writing, data is most commonly used in the singular, as a

mass noun (like information, sand or rain) and this is becoming more

and more popular. The first English use of the word data is from the

1640s. Using the word data to mean transmittable and storable

computer information was first done in 1946. The expression data

processing was first used in 1954. [D]

Second, we pay a great attention to automatic way of processing. The
best known tool allowing us to do so nowadays are computers. That is
why immaterial data is so useful for us – we can turn them into digital
data and feed them a computer systems to make them do for us things
we won't do ourself.

This should explains why nowadays we define database as a digital data
collected in accordance with the rules adopted for a given computer
program specialized for collecting, storing and processing this data.
Such a program (often a package of various programs) is called a
database management system (DBMS).

The database management system (DBMS) is the software that interacts
with end users, applications, and the database itself to capture and
analyze the data. It serves as an intermediate layer isolating end user
from all "unnecessary" technical details. In common language we use
the term database to loosely refer to any of the DBMS, the database
system or an application associated with the database.

S ystem don't have to be a database to be used as a database.

Making one step forward, you can say that system don't have to be a
database to be used as a database. And this is the main thought in last
chapters of this book. I show there some systems which behaves like

2 5

database even though they are not databases. In most cases, no one calls
them database systems but from user's perspective, thanks to SQL-like
interface created over underlying sophisticated and versatile storage
system allowing to work with any kind of data we perceive them as
databases.

Database or store?

A datastore (store) is, as the name indicates, a place where data is
stored. The simplest example of a store is a flat file saved on your disk.
You can also save data in a database, in which the data are stored
physically in files, but those files are managed by some, very often
sophisticated, management system. Viewed from this perspective,
database are a special type of datastore. Not all NoSQL databases have a
builtin "manager", or their functionality is very limited, so the
management is done in the application level. That is why you may see
them just as an another one storage system. Simply speaking, simple
NoSQL databases (for example key-value) are very often referred as a
store while those more complicated (graph for example) as a database,
but this is not rule of the thumb.

2 6

2 7

2 8

SECTION 2

SQL

We can classify database-management systems according to the
database models that they support. Not going far into the past we can
say that first large-scale used model, dominant in the market for more
than 20 years, were relational databases arise in the 1970s. We refer
them as SQL databases because Structured Query Language
(pronounce it as S-Q-L or sequel) was used by the vast majority of them
for writing and querying data. SQL (in a sense: SQL databases) utilizes
Edgar F. Codd’s relational model based on tabular data
representation:

Database model used by SQL (see figure 1.1) assume that data is
represented in terms of tuples grouped into relations. We can think
about relations as spreadsheets table while tuples as a rows of this table.

2 9

FIGURE 1.1 Database model used by SQL

Every tuple in turn consist of one or more attributes which resembles
spreadsheet's columns. Main properties of this model are:

1. You may have any number of tables in our database.

2. In every table you can have any but precisely defined number of
columns.

3. Using keys (which are unique identifier for every row within a given
table) you can define relationships between tables.

Having some data organized this way, you can do some basic operation
on them. Taking for example the data from the customer and order
table:

customer table

id name

1 Alice

2 Betty

3 Carolina

4 Diana

5 Emma

6 Fiona

order table

id customerID total

1 1 100.00

2 1 33.00

3 4 5.00

4 2 250.00

5 3 64.00

3 0

(notice that the customerID column in the order table refers to the
id column in the customer table) you can:

• Retrieve data stored in database:

Query

SELECT name  
FROM customer;

Result

Alice  
Betty  
Carolina  
Diana  
Emma  
Fiona

• Retrieve data stored in database imposing some conditions:

Query

SELECT customerID  
FROM order  
WHERE total > 100;

Result

2  
6  
 

6 6 172.00

3 1

• Retrieve joined data stored in database imposing some conditions:

Query

SELECT name  
FROM customer, order  
WHERE total > 100  

AND customer.id = order.customerID

or

SELECT name  
FROM customer  
INNER JOIN order ON customer.id = order.customerID  
WHERE total > 100;

Please note JOIN existence in the above query. In this case, to get data
you want, you have to combine (join) data coming from different tables.
Joins are typical and indispensable nature of relational
model. You can say it is almost impossible to get useful data making
queries with no joins.

Result

Betty  
Fiona

• Insert data into database:

Query

INSERT INTO customer(id, name)  
VALUES (7, 'Helen');

3 2

Result

• Update existing data:

Query

UPDATE customer  
SET name = 'Grace'  
WHERE id = 7;

Result

customer table

id name

1 Alice

2 Betty

3 Carolina

4 Diana

5 Emma

6 Fiona

7 Helen

customer table

id name

1 Alice

2 Betty

3 Carolina

4 Diana

5 Emma

6 Fiona

7 Grace

3 3

 

• Delete existing data:

Query

DELETE FROM customer  
WHERE name = 'Grace';

Result

An inseparable part of this system is a set of rules known as the normal
forms. What is interesting, relational model defines few levels of
conformance specifying how data should be organized into tables. The
main goal of all normal forms is to force user to keep data in a form
limiting data redundancy and helping to avoid troubles while data is
inserted, updated or deleted. Normalization guidelines are cumulative.
For a database to be in 2NF (second normal form), it must first fulfill all
the criteria of a 1NF (first normal form) database; to be in 3NF, it must
be in 2NF, etc.

customer table

id name

1 Alice

2 Betty

3 Carolina

4 Diana

5 Emma

6 Fiona

3 4

T he main goal of all normal forms is to force user to keep data
in a form limiting data redundancy and helping to avoid

troubles while data is inserted, updated or deleted.

The way of data organization imposed by normal forms, influence the
way we think about real objects. A relational database is like a garage
that forces you to take your car apart and store the pieces in little
drawers, every time you drive into it.

A relational database is like a garage that forces you to take
your car apart and store the pieces in little drawers, every

time you drive into it.

NOTE

Transaction model and ACID

The relational model does not itself define the way in which the

database handles concurrent data change requests named

transactions. To ensure consistency and integrity of data an ACID
transaction model is used and became de facto the standard for all

serious relational database implementations. An ACID transaction

should be

• Atomic. The transaction can not be divided – either all the

statements in the transaction are applied to the database or none

are.

• Consistent. The database remains in a consistent state before and

after transaction execution.

3 5

• Isolated. While multiple transactions can be executed by one or

more users simultaneously, one transaction should not see the effects

of other in-progress transactions.

• Durable. Once a transaction is saved (committed) to the database, its

changes are expected to persist even if there is a failure of operating

system or hardware.

From one side ACID along with relations is the source of the power of

relational databases. On the other hand this is a source of serious and

very difficult to overcome problems.

Mismatch between the relational model (the way you store data) and
real object propagated to object-oriented programming languages (the
way you use data) has serious consequences. Whenever an object is
stored into or retrieved from a relational database, multiple SQL
operations are required to convert from the object oriented
representation to the relational representation. This is cumbersome for
the programmer and can lead to performance or reliability issues.

This led to first attempt to replace relational databases with something
else. This is why in the late 1980s and early 1990s object-oriented
DBMSs were developed. The idea was brilliant: instead of the endless
process of joining and disjoining objects, it is much better to avoid this
unproductive job and save whole objects as they are used in application.
These object-oriented DBMSs (OODBMS), however, never saw wide-
spread market adoption. The main reasons for this state of affairs was
that they lacked a standard, universal, interface like SQL. People are so
used to using SQL, that other interfaces seemed to be awkward or
useless. It is true even now – every modern database technology offers
SQL-like interface even if internally it is not relational system.
OODBMS offered the advantages to the application developer, but
forgot about those who wished to consume information for business

3 6

purposes. This could be the reason that OODBMS systems had
completely failed to gain market share. You have to remember that
databases don’t exist to make programmers life simpler. They represent
significant assets that must be accessible to those who want to mine the
information for decision making and business intelligence. By
implementing a data model that was only understandable and could be
used by the programmer, and ignoring the business user of a usable
SQL interface, the OODBMS failed to gain support outside
programmers world.

Databases don’t exist to make programmers life simpler. They
represent significant assets that must be accessible to those

who want to mine the information for decision making and
business intelligence.

This way SQL databases have defended their dominant position in the
market. Relational model is undoubtedly characterized by the following
set of positive features.

• ACID transactions at the database level makes development and
usage easier.

• Most SQL code is portable to other SQL databases.

• Typed columns and constraints helps validate data before it’s added
to the database which increase consistency of the data stored in
database.

• Build in mechanism like views or roles prevents data to be changed or
viewed by unauthorized users.

To be honest one cannot forget about negative side of relational model.
Most of the following features weren’t at that time a problem but they
exist.

3 7

• ACID transactions may block system for a short time which may be
unacceptable. Remember about joins: if you want get some data you
have to join multiple tables which means you can't do any inserts or
updates (required these tables) at the same time to prevent data
inconsistency.

• The object-relational mapping is possible but can be complex and add
one more intermediate layer.

• RDBMSs don’t scale out. See next chapter – in short, it is very
difficult to increase "infinitely" processing power of relational system.
Sharding over many servers can be done but requires new or tuned
application code and will be operationally inefficient.

• It is difficult to store high-variability data in tables.

• It is difficult to store data in real time and make real time processing.

Despite its drawbacks relational databases, were (and still are) very well
established in IT and seems to be perfectly crafted to all needs and
nothing announced that a new era was coming. Unexpectedly in the
2000s non-relational databases became popular. We refer them as
NoSQL because at the very beginning they used query languages (or
methods) different than well known SQL. Today you can observe a
tendency to introduce SQL-like querying languages in case of many
NoSQL based systems.

Summary

Relational model is undoubtedly characterized by the following set of
positive features:

• ACID transactions at the database level makes development and
usage easier.

3 8

• Most SQL code is portable to other SQL databases.

• Typed columns and constraints helps validate data before it’s added
to the database which increase consistency of the data stored in
database.

• Build in mechanism like views or roles prevents data to be changed or
viewed by unauthorized users.

To be honest one cannot forget about negative side of relational model:

• ACID transactions may block system for a short time which may be
unacceptable.

• The object-relational mapping is possible but can be complex and add
one more intermediate layer.

• RDBMSs don’t scale out. Sharding over many servers can be done but
requires new or tuned application code and will be operationally
inefficient.

• It is difficult to store high-variability data in tables.

• It is difficult to store data in real time and make real time processing.

• Too much overhead in using a full- featured DBMS as a “dumb” data
store for may web-based application.

• SQL is an overkill for simple look-up queries.

• Consistency and correctness in the price of availability and
performance.

3 9

4 0

SECTION 3

Big Data – big problem
with data

Why was NoSQL created? You could say, SQL was getting old. Nothing
could be more wrong. Information technology is one of the few areas in
which the system components do not change because of their age. The
only impulse for change is usefulness. Never age. An unknown factor
had to appear, forcing us to abandon previously known technologies.

When data becomes a problem?

To find an answer for this question, let's make a very simple mental
experiment performed on N sheets of paper.

Stamping task Having a stamp, mark every sheet of paper with it.
It is boring but feasible task. What is important, to complete it with less
time (increase performance), we may do one of the following actions:

• Increase the speed of stamping a single sheet employing a mega man
– a man who can do this much faster than all other known man.
Despite of having mega man, this increase in speed has its natural
physical limitations – mega man can’t work faster than himselves.

• You can divide the stack into smaller (sub)stacks and assign each
smaller stack to different person. Increasing stamping speed can be
achieved by assigning more people to this task. What's more, despite

4 1

the fact that each of the people, compared to the mega man from the
first example, will be much less efficient, this task considered as a
whole will be solved much faster if you will employ a right number of
helpers.

Numbering task Numbering all N cards with N natural numbers
from 1 to N. Numbered pages should be stored as a pile of pages
preserving increasing order from the bottom to the top.
In this case there is no possibility to divide task into smaller (sub)tasks.
The only chance to increase performance is to increase processing
power of a one single processing unit (employ mega man). But this, as
you know, has some unbreakable physical limitations.

Trying to solve both tasks you face a problem of task parallelization
and system scaling. Generally speaking, scalability is the property
of a system to handle a growing amount of work by adding resources
to the system. There are two options to scale system:

• either by increasing the power of single execution unit (mega man) –
this is called vertical scaling;

• or increase the number of execution unit – this is called horizontal
scaling. Horizontal scaling seems to be more perspective. There is
"only" one small but important detail: your task should be divisible
into independent subtasks. Unfortunately this is not always the case
as you have seen in the numbering task. You will say that stamping
task is a parallelizable task while numbering task is a non-
parallelizable task.

W hen there is relatively little data, non-scalable (or at most
vertically scalable) systems are sufficient.

Task parallelization is about possibility of division one task into
independent subtasks. Scaling system vertically you can effectively solve
non-parallelizable tasks, while horizontal scaling works for

4 2

parallellizable tasks. As it is not possible to scale system vertically
indefinitely, horizontal scaling is much more desired feature. Whenever
in this book I use a term scalable task I mean a task you can effectively
solve scaling your system horizontally thanks to the ability to divide that
task into parallelly processable subtasks. When does a task become a
problem for us? Notice that need for scaling occurs only in case of
voluminous set of data (we say often: large data or big data). For small
N there should be no problems to complete both stamping task and
numbering task by only one man in reasonable time. When there is a
relatively little data, non-scalable (or at most vertically scalable)
systems are sufficient. So data may be a problem when there is a lot of
it. But what does a lot mean? How is it today? Do we have a lot of data
today?

Data may be a problem when there is a lot of it.

Volume

It is assumed that today organizations and users world-wide create over
2.5 EiB (, more than , 5 billions DVD) of data a day. As a point of
comparison, the Library of Congress currently holds more than 300 TiB
(, more than , 65000 DVD) of data. Almost any aspect of our
live is, or can be, a source of data (another question is, if we really need
them?) and they can be generated by human, machines as well as
environment. The most common are (H is used to denote human, M –
machines, E – environment):

• (H) social media, such as Facebook and Twitter,

• (H) scientific and research experiments, such as physical simulation,

• (H) online transactions, such as point-of-sale and banking,

260 1018

240 1012

4 3

• (M) sensors, such as GPS sensors, RFIDs, smart meters and
telematics,

• (M) any working device we monitor for our safety, such as planes or
cars,

• (E) weather conditions, cosmic radiation.

NOTE

How much data?

Every minute (in 2018):

• 4.166.667 likes made by Facebook users,

• 347.222 tweets on Tweeter,

• 100.040 cals on Skype,

• 77.166 hours of movies from Netflix,

• 694 Uber users take ride,

• 51.000 application are downloaded from AppStore. [HMD]

Today, we collect all data we can get regardless whether we really need
them or not. The term data lake was created for this type of data
"collection". They acts as a lake with lots of different things inside, not
always easily accessible and visible. We do this (collect data) not
necessarily because we need it but because we can. Maybe one day we
will need it – we think.

4 4

Over time, large amounts of data hide what you previously
stored.

Over time, large amounts of data can hide what you previously stored.
This is like my basement: I know that some elements I need are
somewhere in it. Unfortunately, because there are so many elements,
it's cheaper, easier and faster to buy new one than try to find them in my
basement element lake.

What is worse, volume is not the only problem with data. Along with
that, there are more factors playing also very important role: velocity
and variety. All of them together constitutes something we call
nowadays big data.

NOTE

More Vs

According to some sources, today big data features may be summed

up in more than three different Vs. Today for a dataset to be

considered as a big Big Data, it must possess characteristics commonly

referred to as the Five Vs: volume, velocity, variety, veracity and value.

The more we use Big Data, the greater impact on our live it has. Going

further, you might consider up to 10 factors: among volume, velocity,

variety, veracity and value defined so far we should also consider:

validity, volatility, variability, viscosity and vulnerability. There are also

some attempts to distinguish more v’s: 17 or even 51. [BDC]

This growth of data size is outpacing the growth of storage capacity,
leading to the emergence of information management systems where
data is stored in a distributed way, but accessed and analyzed as if it
resides on a single machine. Unfortunately, an increase in processing

4 5

power does not directly translate to faster data access, triggering a
rethink on existing database systems.

S QL solutions were not able to cope with the current needs of
working with large data sets in real time.

This justifies why we've heard about NoSQL so "recently" (relational
(SQL) databases are known from the 1970s, nonrelational databases
(NoSQL) from the 2000s). Until the data explosion, the existing
solutions (SQL) proved to be sufficient. Now they are not able to cope
with the current needs of working with large data sets in real time.

4 6

CHAPTER 5

Key-value stores

General overview of key-value stores

• Basic ideas and features

• Working with Riak

2 0 3

2 0 4

SECTION 1

Basic ideas

Array is one of the first (if not the first) data structures taught to
computer science students. After numbers, like integers and floats,
characters, and boolean variables the array is the simplest, the most
universal and present (at least in some equivalent form) in almost any
programming language. In its most basic form, we can say that an array
is an ordered collection of values (objects) of the same type. Each value
in the array is associated with an integer number called index. Indexes
are taken from given interval with no gaps – each number from this
interval corresponds to exactly one index which in turn corresponds to
exactly one value.

Although arrays are good, they are no perfect. Mostly because of
restriction to using integers as indexes (very often from language
specific range – range starting always from 0 (zero) is the best known)
and limiting values to the same type. Generalisation of an array is an
associative array where it is allowed to use arbitrary type for identifiers
and array's values. Depending on programming language, associative
arrays are recognisable by a number of different names, including
dictionary, map, hash map, hash table, and symbol table. Regardless of
the name, the key feature is ability to store any value pointed by almost
any other value being the key.

In its simplest form, we can say that key-value store is a dictionary. We
will use a term dictionary, instead of any other, because in my opinion
it best describes all the related concepts. A book named a dictionary has
a list of words (keys) and each word (key) has one definitions. Definition

2 0 5

may be simple or compound consisting of many sub-definitions
depending on its complexity. The paper based dictionary is a simple
(analog, non-computer) key-value store where word entries represent
keys and definitions (sometimes very elaborated) represent values. If
only dictionary entries (words) are sorted alphabetically, definition
retrieval is fast. There is no need to scan the entire dictionary item by
item, key by key to find what we are looking for. On the other hand
there is no option to find something by scanning its contents
(definitions) – we can do this, but it would take too much time.

A key-value store is a simple database that when presented
with a simple string (the key) returns an arbitrary large

BLOB (value).

Like the dictionary, a key-value store is also indexed by the key. The key
points directly to the value, which we can get without need for any
search, regardless of the number of items in our store; an access is
almost instantaneous. A key-value store is a simple database that when
presented with a simple string (the key) returns an arbitrary large BLOB
value. Sometimes the key also may be a BLOB. Because database is in
itself a very simple, also very simply is its query language. Being more
precisely, there is no query language because set of operation (queries)
is limited to add and remove key-value pairs into/from a database.

NOTE

BLOB

BLOB (binary large object, or sometimes: basic large object) is a

sequence of bytes stored as a single entity. Most basic examples of

BLOBs are images, audio or other multimedia objects, but also binary

executable code. In general, BLOB is anything stored in computer

system, which is not represented as a basic or „standard” data type

2 0 6

such as number, character, string, timestamp or UUID. In case of BLOBs

we don’t care what really BLOB is. We simply treat it as a sequence of

bytes.

The story of blob term is quite interesting. Blobs were originally just

big amorphous chunks of data invented by Jim Starkey at DEC, who

describes them as "the thing that ate Cincinnati, Cleveland, or

whatever" referring to The Blob movie (1958). Later, Terry McKiever, a

marketing person for Apollo, felt that it needed to be an acronym and

invented the backronym Basic Large Object. Then Informix invented an

alternative backronym, Binary Large Object. [BLOB]

2 0 7

2 0 8

SECTION 2

Key-value stores
vs. relational databases

Simplicity is a key word associated with key-value databases where
everything is simple. Unlike in relational databases, there are no tables,
so there are no features associated with tables, such as columns and
constraints on columns. If there are no tables, there is no need for joins.
In consequence foreign keys do not exists and so key-value databases do
not support a rich query language such as SQL. Saying the truth, their
query language is very primitive.

The only extra feature supported by some key-value databases are
buckets, or collections. We use them for creating separate namespaces
within a database. Keys from one namespace do not collides with keys
from other so we can use the same keys in more than one namespace.

C ontrary to relational database where meaningless keys are
used, the keys in key-value databases are meaningful.

Contrary to relational database where meaningless keys are used, the
keys in key-value databases are meaningful – see Key is the key section
for more details.

While in relational database we avoid duplicating data, in key-value (in
NoSQL in general) databases it is a common practice.

2 0 9

Limitations of key-value databases

There are a lot of key-value databases. Bellow there are some general
limitations which are in line with the general idea of this database type.
For a given database some of them may not be true.

• The only way to look up values is by key. If you do not think over the
strategy of creating key names well, you may face the problem of
inability to fetch the data stored in the database. This is really very
important so a separate section Key is the key is devoted to this topic.

• Range queries are not supported out of the box. Because keys are of
the form of any arbitrary string or more generally BLOB there is no
method to define range. It would be possible with for example regular
expressions executed on the database side but as for now no key-value
database support this feature. Instead, based on proper key naming
strategy, on the application side, you can generate a sequence of keys
and use them to retrieve values.

• Queries from one key-value database may not be portable to the
other. This is generally true in NoSQL systems as there is no standard
query language comparable to SQL existing for relational databases.

2 1 0

2 1 1

2 1 2

SECTION 3

Essential features of key-
value databases

Despite a huge variety of key-value databases there exists a set of
features common for all of them:

• simplicity,

• speed,

• scalability.

Simplicity

As it was stated in a previous section, simplicity is a key word describing
key-value databases.

Ask yourself, how many times do you really need relational database? Is
it really indispensable when developing simple application with persons
(company staff) and skills they have? We spend our time to develop
relational database with all of its requirements (do you remember about
normal forms?). For what? Finally our application retrieves
aggregations from a database to display person by person with their
skills on a simple web page.

If you follow one of the agile method, you need a flexible tool to rapidly
test your changing ideas. With key-values if you want to track additional

2 1 3

attributes or remove some of them after your program is ready, you can
simply add / change code to your program to take care of those
attributes. There is no need to change database code to tell the database
about the new attributes set.

I f we follow one of the agile method we need a flexible tool to
rapidly test our changing ideas.

In key-value databases, you work with a very simple data model which
resembles dictionary. The syntax for manipulating data is simple.
Regardless of the type of an operation, you specify a namespace, and a
key to indicate you want to perform an action on a key-value pair. Type
of it depends on your call. There are three operations performed on a
key-value store: put, get, and delete.

• put adds a new key-value pair to the table or updates a value if this
key is already present. What should be stressed here, an update
means replace existing value with a new one. It’s obvious when value
is a „real” BLOB like a media file. If our BLOB is a JSON, you might
tend to think about each of its attribute-value pairs separately. The
problem is that your’s BLOB interval structure is not visible to
database and even if you want to change one of several hundred
values you have to resend almost the same JSON.

• get returns the value for a given key.

• delete removes a key and its value from the table.

Other feature which simplifies programmers fate is typelessnes which is
a consequence of the fact that values are, generally speaking, BLOBs so
you can put everything you want. It’s up to the application to determine
what type of data is being used, such as an integer, string, JSON, XML
file, or even binary data like image. This feature is especially useful
when the data type changes or you need to support two or more data
types for the same attribute. Imagine for example a network of sensors

2 1 4

where some of them returns integer value, other logical state or
enumeration or even a string. There is no problem with this in key-value
database.

Speed

In this case speed is a consequence of simplicity. There is no need for
complicated query resolving logic. Every query directly specify the key
and always it is only one key. The only job is to find the value
corresponding to it. Supported with internal design features optimising
performance, key-value databases delivers high-throughput for
applications with data-intensive operations.

Scalability

As I mentioned in NoSQL: motivations section, scalability is another
most wanted feature all databases wants to have. Working with key-
value databases you have no relational dependencies and all write and
read requests are independent and this seems to be a perfect state for
scaling.

2 1 5

2 1 6

SECTION 4

Key is the key

Key is the key in effective key-value databases usage. It is so important,
that it is worth to devote a separate part dedicated only to this topic.

As already stated, keys are used to index, or you can say: uniquely
identify, a value within a namespace in a key-value database. This
makes keys sound pretty simple, and sometimes they look so. On the
other hand, keys are the only method you can get the value you are
looking for. In key-value databases, generally speaking, there is no
method to scan or search values so the right key naming strategy is
crucial. I think that term strategy in this context is better than any
other because correct keys names allow you to win information war and
is factor which makes some application much faster and responsive
than others.

Although it's not strict rule, while working with relational databases
counters or sequences are very often used to generate keys. Working
with numbers is the easiest way to ensure that every new call for a new
key returns a value (number in this case) which is unique and unused so
far. That's why application designers use these (numbers) somehow
routinely to make keys (primary keys) for rows of data stored in a table.
In relational databases keys are used to connect (join) data stored in one
table with others tables' data. Storing a primary key to a row in another
table is known as a foreign key. This is the main purpose, and because
of the way relational databases work, it makes sense (sometimes it is
considered as a good practice) to have such a meaningless keys in this
case.

2 1 7

K eys in relational databases are used to join data. Their
numeral values are the easiest way to guarantee their

uniqueness.

In key-value databases the rules are different. Although you may think
about key-value databases as built on the basis of very simple table with
many rows and just two columns: first for the key and second for the
value, they do not have a built-in table structure. If there are no tables,
there are no rows and columns so the question arise: how to "join",
combine or somehow collect all information related to a given object?
The answer is: use right aggregation and key names.

Let's go back to our Star Wars based example from Example subsection
in Relational model: normal forms. In third normal form you have three
distinct tables. Now imagine that you want to keep customer data
shown below in key-value database:

First attempt may look like this:

CustomerDetails[10] = 'Dart Vader'

Drawbacks of this are obvious. First, you have no information what
customer's detail you have under index 10: her/his name or maybe age
or maybe something totally different. Second: how you can store other
informations related to this customer?

Usage another namespace might be a solution:

customer table

number name location

10 Dart Vader Star Destroyer

20 Luke Skywalker Naboo

30 C3PO Tatooine

2 1 8

CustomerName[10] = 'Dart Vader'  
CustomerLocation[10] = 'Star Destroyer'

but this approach leads to potentially huge namespace set which is not
easy to maintain and use. Some of us can live with this. But will this still
be working if you want to store information about an invoice details?

Of course you can use all of the data as values and put them into your
key-value database, for example in the following JSON document:

InvoiceDetails[1] =  
{  
 "Invoice details" : [ 
 {"Item name" : "lightsaber",  
 "Item quantity" : 1,  
 "Item price" : 100},

 {"Item name" : "black cloak",  
 "Item quantity" : 2,  
 "Item price" : 50},

 {"Item name" : "air filter",  
 "Item quantity" : 10,  

invoice details table

invoice
number

invoice
item

item  
name

item quantity item
price

1 1 lightsaber 1 100

1 2 black cloak 2 50

1 3 air filter 10 2

2 1 battery 1 25

3 1 lightsaber 5 75

3 2 belt 1 5

4 1 wires 1 10

2 1 9

 "Item price" : 2}  
]  
}

or even you can write it as

InvoiceDetails[1] =  
{  
 "Invoice number" : 1,  
 "Invoice details" : [ 
 {"Item name" : "lightsaber",  
 "Item quantity" : 1,  
 "Item price" : 100},

 {"Item name" : "black cloak",  
 "Item quantity" : 2,  
 "Item price" : 50},

 {"Item name" : "air filter",  
 "Item quantity" : 10,  
 "Item price" : 2}  
],

 "Customer details" : {  
 "Customer name" : "Dart Vader"  
 "Customer location" : "Star Destroyer"  
 }  
}

Hmm... It's not bad but not as good as it may be. Notice that you have to
parse this JSON every time to get even very basic piece of information,
like customer name.

Avoid to use many namespaces. Remember: key is the key

I hope that with this examples I was able to convince you that
something should be changed in our approach. Because key-values
databases are simple, you have not too many possibilities. As mentioned

2 2 0

earlier, you can construct meaningful names that entail needed
information. For example:

Shop[Customer:10:name] = 'Dart Vader'  
Shop[Customer:10:location] = 'Star Destroyer'

Do not follow relational pattern

Never ever copy relational data model. With this example you face
another important issue related with keys. Let's say that now you want
to put information related with invoice details. You can do this in many
different ways. Following relational pattern for C3PO you have:

Shop[customer:30:invoice:2] = ...  
Shop[customer:30:invoice:4] = ...

And this is what you should avoid. In this particular case you obtain
discontinuous invoice range which makes queries almost impossible. If
range is discontinuous, every time you obtain nonexistent key you have
no idea if there are no more items or it is only a gap and you should
continue increasing counter to get all remaining data. If range is
continuous, you can start from 1 and increase counter till you obtain
nonexistent key which is interpreted as there are no more items. More
adequately would be enumerating invoices independently per customer:

Shop[customer:30:invoice:1] = ...  
Shop[customer:30:invoice:2] = ...

so you could iterate over all invoices related with customer identified by
the number 30.

Mind aggregation you expect to use

On the other hand, if you suppose that you will use the data most often
for order processing, another key naming convention might by more
relevant

2 2 1

Shop[invoice:1:customerDetails] = ...  
Shop[invoice:1:details] = ...  
Shop[invoice:2:customerDetails] = ...  
Shop[invoice:2:details] = ...  
Shop[invoice:3:customerDetails] = ...  
Shop[invoice:3:details] = ...  
Shop[invoice:4:customerDetails] = ...  
Shop[invoice:4:details] = ...

As you can see in this case, following relational pattern in numbering
invoices sounds good.

Again this is a sign for us that correct key naming is a strategy and
should be chosen very carefully with respect to the aggregation
boundaries we have discussed in previous part (NoSQL chapter,
Motivations section, Aggregations subsection) and application
(developers) future needs.

Mind range queries you expect to use

Dealing with ranges of values is another thing which should be
considered. If you expect you will need in the future process our
invoices by date or date range, following naming convention:

Shop[invoice:20171009:1:customerDetails] = ...  
Shop[invoice:20171009:1:details] = ...  
Shop[invoice:20171010:1:customerDetails] = ...  
Shop[invoice:20171010:1:details] = ...  
Shop[invoice:20171010:2:customerDetails] = ...  
Shop[invoice:20171010:2:details] = ...  
Shop[invoice:20171013:1:customerDetails] = ...  
Shop[invoice:20171013:1:details] = ...

would be better than:

Shop[invoice:1:customerDetails] = ...  
Shop[invoice:1:details] = ...  
Shop[invoice:1:date] = "20171009"  

2 2 2

Shop[invoice:2:customerDetails] = ...  
Shop[invoice:2:details] = ...  
Shop[invoice:2:date] = "20171010"  
Shop[invoice:3:customerDetails] = ...  
Shop[invoice:3:details] = ...  
Shop[invoice:3:date] = "20171010"  
Shop[invoice:4:customerDetails] = ...  
Shop[invoice:4:details] = ...  
Shop[invoice:4:date] = "20171013"

With a pattern of the following fom:

invoice:<DATE>:<INVOICE_NUMBER>:[details | customerDetails]

you can generate a sequence of keys for a given date <DATE> starting
from invoice number <INVOICE_NUMBER> of value 1 and continue as
long as for some number the key will be invalid.

If you have developed relational data models, you might have noticed
parallels between the key-naming convention we have just presented
and tables, columns names and primary keys. Concatenating a table
name with a primary key, and a column name to get:

Customer:10:name

key is equivalent to a relational table customer, with a column called
name, and a row identified by the primary key ID of 10. It's worth to
stress that you should avoid key naming conventions which mimics
relational databases schema. If it is the case it's worth to consider
database replacement. Using key-value database as relational do not
seems to be reasonable but maybe in some specific cases (for example
when the total number of tables is low) could be effective.

n

2 2 3

2 2 4

SECTION 5

Values

Working with key-value database you have to carefully select key
naming strategy. Similarly you have to balance aggregation
boundaries for values to make writes and reads more efficient
as well as reduce latency.

Bellow there are some strategies. If they are good or bad depends on you
– we will try to highlight their pros and cons.

Values which are big aggregates
The following aggregate may be an example of this strategy

{  
 "Invoice number": 1,  
 "Invoice details": [ 
 {"Item name": "lightsaber",  
 "Item quantity": 1,  
 "Item price": 100},

 {"Item name": "black cloak",  
 "Item quantity": 2,  
 "Item price": 50},

 {"Item name": "air filter",  
 "Item quantity": 10,  
 "Item price": 2}  
],

2 2 5

 "Customer details": {  
 "Customer name": "Dart Vader",  
 "Customer location": "Star Destroyer"  
 }  
}

The advantage of using a structure such as this is that much of the
information about invoice is available with a single key lookup. By
storing all the informations together, you might reduce the number of
disk seeks that must be performed to read all the needed data.

On the other hand when an additional item is added or even existing
one is edited (changed), the whole structure has to be written to a disc.
As structure grows in size, the time required to read and write the data
can increase.

Another drawback is that you have to read such a big structure even if
you need only a small piece of information – this way you waste time for
reading and memory for storing it.

Keep together values commonly used
Another approach is to store only commonly used values together. For
example under the separate keys invoice and customer details. Now you
have more seeks and more reads operations but you spend less time
reading particular data.

Small values supports cache
Assume that your database keeps data you have read before in memory
buffer (cache) so in case you want them again, database could serve
them much faster than from disc. Of course the size of cache is limited
so you may be able to store, say 2 big structures or 10 smaller. Now if
you want to print third customer name, you have to remove one big
structure and replace it with a new one or, in the second case, remove
one small structure (for example with second customer name) and
replace it with a third customer name. In the second case if you need
second customer items there is a high chance that all of them are still in

2 2 6

the memory while in the first case the probability that you don’t have to
reloaded them is much lower.

2 2 7

2 2 8

SECTION 6

Summary

• No tables, so there are no features associated with tables, such as
columns types or constraints on columns.

• There is no tables so there is no need for joins. In consequence
foreign keys do not exists.

• Do not support a rich query language such as SQL. Saying the truth,
query language is very primitive and limited to simple select, insert
and delete equivalent commands.

• Contrary to relational databases where meaningless keys are used, the
keys in key-value databases are meaningful and play crucial role.

• Although key-value databases don’t have any structure we have to
very carefully balance aggregation boundaries for values to make
writes and reads more efficient as well as reduce latency.

2 2 9

2 3 0

SECTION 7

Working with Riak

Creating object

To facilitate key handling, objects in Riak are collected in buckets.
Buckets are essentially a flat namespace and may also be seen as a
common prefix for a set of keys or a table name – if you want to have
some reference to relational model.The basic form of writes (object
creation) is (in this chapter we will use HTTP protocol, so if you need
some explanations how it works, please read Appendix C: HTTP):

PUT /types/<type>/buckets/<bucket>/keys/<key>

There is no need to intentionally create buckets. They pop into existence
when keys are added to them, and disappear when all keys have been
removed from them. If you don’t specify a bucket’s type, the type default
will be applied. If we're using HTTP, POST can be used instead of PUT.
The only difference between POST and PUT is that you should POST in
cases where you want Riak to auto-generate a key.

Here is an example of storing an object (short text: Test string 01)
under the key key001 in the bucket bucket001, which bears the type
type001:

2 3 1

nosql@nosql:~$ curl -X PUT \  
> -H "Content-Type: text/plain" \ 
> -d "Test string 01" \  
> http://localhost:8098/types/type001/buckets/bucket001/
keys/key001

Riak replays with:

Unknown bucket type: type001

Notice that although you don't have to create bucket in advance, you
have to create and activate a type you want to use – the above command
will only work if the type001 bucket type has been created and
activated. The step below allows to create the bucket type:

nosql@nosql:~$ sudo riak-admin bucket-type create type001
'{"props":{}}'  
type001 created

and than activate it:

nosql@nosql:~$ sudo riak-admin bucket-type activate type001 
type001 has been activated

Now you can again try to add an object:

nosql@nosql:~$ curl -X PUT \  
> -H "Content-Type: text/plain" \ 
> -d "Test string 01" \ 
> http://localhost:8098/types/type001/buckets/bucket001/ 
keys/key001

2 3 2

Hmmm... Riak replays with no errors and no any other messages... It's
time to get something from your database.

Reading object

You can think of writes in Riak as analogous to HTTP PUT (POST)
requests. Similarly, reads in Riak correspond to HTTP GET requests.
You specify a bucket type, bucket, and key, and Riak either returns the
object that’s stored there–including its siblings (more on that later)–or
it returns not found (the equivalent of an HTTP 404 Object Not
Found).

Here is the basic command form for retrieving a specific value under a
given key from a bucket:

GET /types/<type>/buckets/<bucket>/keys/<key>

and how you can use it:

nosql@nosql:~$ curl http://localhost:8098/types/typ  
e001/buckets/bucket001/keys/key001  
Test string 01

If there’s no object stored in the location where you attempt a read, you
will get the not found response:

nosql@nosql:~$ curl http://localhost:8098/types/typ  
e001/buckets/bucket001/keys/key002  
not found

2 3 3

Updating objects

If an object already exists under a certain key and you want to write a
new object to that key, Riak needs to know what to do, especially if
multiple writes are happening at the same time. Which of the objects
being written should be deemed correct? These question can arise quite
frequently in distributed, eventually consistent systems.

Riak decides which object to choose in case of conflict using causal
context. These objects track the causal history of objects. They are
attached to all Riak objects as metadata, and they are not readable by
humans. Using causal context in an update would involve the following
steps:

• Fetch the object.

• Modify the object’s value (without modifying the fetched context
object).

• Write the new object to Riak.

The most important thing to bear in mind when updating objects is this:
you should always read an object prior to updating it unless
you are certain that no object is stored there. If you are storing
sensor data in Riak and using timestamps as keys, for example, then you
can be sure that keys are not repeated. In that case, making writes to
Riak without first reading the object is fine. If you are not certain,
however, then it is recommend always reading the object first.

When using curl, the context object is attached to the X-Riak-Vclock
header:

2 3 4

nosql@nosql:~$ curl -i http://localhost:8098/types/  
type001/buckets/bucket001/keys/key001 
HTTP/1.1 200 OK  
X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frbujHgFZDNlMCU  
y5rEy9LiyXOXLAgA=  
Vary: Accept-Encoding  
Server: MochiWeb/1.1 WebMachine/1.10.9 (cafe not found)  
Link: </buckets/bucket001>; rel="up"  
Last-Modified: Thu, 06 Sep 2018 10:26:38 GMT  
ETag: "1KTnww1Q52P9d666EtbP41"  
Date: Thu, 06 Sep 2018 10:28:56 GMT  
Content-Type: text/plain  
Content-Length: 14

As you can see, for HTTP, you can get the header information shown
before the data by using -i /--include option. curl understands also
the -D / --dump-header option when getting files from both FTP and
HTTP, and it will then store the headers in the specified file:

nosql@nosql:~$ curl -D headers.txt http://localhost:8098/ty  
pes/type001/buckets/bucket001/keys/key001 
Test string 01  
nosql@nosql:~$ cat headers.txt  
HTTP/1.1 200 OK  
X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frbujHgFZDNlMCUy5rEy9Liy  
XOXLAgA=  
Vary: Accept-Encoding  
Server: MochiWeb/1.1 WebMachine/1.10.9 (cafe not found)  
Link: </buckets/bucket001>; rel="up"  
Last-Modified: Thu, 06 Sep 2018 10:26:38 GMT  
ETag: "1KTnww1Q52P9d666EtbP41"  
Date: Thu, 06 Sep 2018 10:29:30 GMT  
Content-Type: text/plain  
Content-Length: 14

When performing a write to the same key, that same header needs to
accompany the write for Riak to be able to use the context object. Before

2 3 5

you will do this, let's check what will happen if you will ignore X-Riak-
Vclock:

nosql@nosql:~$ curl -X PUT \  
> -H "Content-Type: text/plain" -d "Test string 01_updat 
ed" \  
> http://localhost:8098/types/type001/buckets/bucket001/
keys/key001

nosql@nosql:~$ curl -D headers.txt http://localhost:8098/ty  
pes/type001/buckets/bucket001/keys/key001 
Siblings:  
1KTnww1Q52P9d666EtbP41  
38C20HjUtlR8syP3CMGlVW

Something goes wrong – you will be back to this case a little bit later.
Let's create another object na update it according to the above steps
(using X-Riak-Vclock header):

nosql@nosql:~$ curl -X PUT -H "Content-Type: text/plain" -d  
"Test string 02" http://localhost:8098/types/type001/bucket  
s/bucket001/keys/key002

nosql@nosql:~$ curl -D headers.txt http://localhost:8098/ty  
pes/type001/buckets/bucket001/keys/key002 
Test string 02

nosql@nosql:~$ cat headers.txt  
HTTP/1.1 200 OK  
X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frZuctCDCCUy5rE  
yzN/McpUvCwA=  
Vary: Accept-Encoding  
Server: MochiWeb/1.1 WebMachine/1.10.9 (cafe not found)  

2 3 6

Link: </buckets/bucket001>; rel="up"  
Last-Modified: Thu, 06 Sep 2018 10:30:30 GMT  
ETag: "4j7mSGlt44VnZkh8eaCltP"  
Date: Thu, 06 Sep 2018 10:30:55 GMT  
Content-Type: text/plain  
Content-Length: 14

Having a new object (string Test string 02) you can try to modify
it:

nosql@nosql:~$ curl -X PUT \  
> -H "Content-Type: text/plain" \ 
> -H "X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frZuctCDCCUy5rE  
yzN/McpUvCwA=" \  
> -d "Test string 02 udated" \ 
> http://localhost:8098/types/type001/buckets/bucket001/ 
keys/key002

nosql@nosql:~$ curl -D headers.txt http://localhost:8098/ty  
pes/type001/buckets/bucket001/keys/key002 
Test string 02 updated

nosql@nosql:~$ cat headers.txt  
HTTP/1.1 200 OK  
X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frZuctCDCCUy5bE  
y8G5lucqXBQA=  
Vary: Accept-Encoding  
Server: MochiWeb/1.1 WebMachine/1.10.9 (cafe not found)  
Link: </buckets/bucket001>; rel="up"  
Last-Modified: Thu, 06 Sep 2018 10:31:55 GMT  
ETag: "5RUinoCMbFaMyGdfofm5bZ"  
Date: Thu, 06 Sep 2018 10:32:00 GMT  
Content-Type: text/plain  
Content-Length: 22

2 3 7

Notice that after update our X-Riak-Vclock has been changed from:

a85hYGBgzGDKBVI8ypz/frZuctCDCCUy5rEyzN/McpUvCwA=

to:

a85hYGBgzGDKBVI8ypz/frZuctCDCCUy5bEy8G5lucqXBQA=

Siblings and conflict resolution

A sibling is created when Riak is unable to resolve the canonical version
of an object being stored, i.e. when Riak is presented with multiple
possible values for an object and can’t figure out which one is most
causally recent. In our case you have such a conflict: there are two
objects (string Test string 01 and Test string 01_updated)
under the same key key001 in the bucket bucket001, which bears the
type type001:

nosql@nosql:~$ nosql@riak:~$ curl -D headers.txt http://loc  
alhost:8098/types/type001/buckets/bucket001/keys/key001 
Siblings:  
1KTnww1Q52P9d666EtbP41  
38C20HjUtlR8syP3CMGlVW

As you can see, reading an object with sibling values will result in some
form of “multiple choices” response (e.g., 300 Multiple Choices in
HTTP). If you are using the HTTP interface and want to view all sibling
values, you can attach an Accept: multipart/mixed header to your
request to get all siblings in one request:

2 3 8

nosql@nosql:~$ curl -X GET \  
> -H "Accept: multipart/mixed" \ 
> -D headers.txt \ 
> http://localhost:8098/types/type001/buckets/bucket001/ 
keys/key001  
 
--LJ8Xy5UHU8z3L3OtKvMwM7BX9DM  
Content-Type: text/plain  
Link: </buckets/bucket001>; rel="up"  
Etag: 1KTnww1Q52P9d666EtbP41  
Last-Modified: Thu, 06 Sep 2018 11:26:38 GMT  
 
Test string 01  
--LJ8Xy5UHU8z3L3OtKvMwM7BX9DM  
Content-Type: text/plain  
Link: </buckets/bucket001>; rel="up"  
Etag: 38C20HjUtlR8syP3CMGlVW  
Last-Modified: Thu, 06 Sep 2018 11:27:10 GMT  
 
Test string 01 updated  
--LJ8Xy5UHU8z3L3OtKvMwM7BX9DM--

nosql@nosql:~$ cat headers.txt  
HTTP/1.1 300 Multiple Choices  
X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frbujHgFZDNnMCUy5bEy/Kth  
vcqXBQA=  
Vary: Accept, Accept-Encoding  
Server: MochiWeb/1.1 WebMachine/1.10.9 (cafe not found)  
Last-Modified: Thu, 06 Sep 2018 10:27:10 GMT  
ETag: "6nZEerBvuMlMlcQITGUY7C"  
Date: Thu, 06 Sep 2018 21:28:56 GMT  
Content-Type: multipart/mixed; boundary=LJ8Xy5UHU8  
z3L3OtKvMwM7BX9DM  
Content-Length: 421

You can request individual siblings by adding the vtag query parameter
specifying which sibling to retrieve:

2 3 9

nosql@nosql:~$ curl http://localhost:8098/types/type001/buc  
kets/bucket001/keys/key001  
Siblings:  
1KTnww1Q52P9d666EtbP41  
38C20HjUtlR8syP3CMGlVW

nosql@nosql:~$ curl http://localhost:8098/types/type001/buc  
kets/bucket001/keys/key001?vtag=1KTnww1Q52P9d666EtbP41 
Test string 01

nosql@nosql:~$ curl http://localhost:8098/types/type001/buc  
kets/bucket001/keys/key001?vtag=38C20HjUtlR8syP3CMGlVW 
Test string 01 updated

To resolve the conflict, store the resolved version with the X-Riak-
Vclock given in the response – in this case:

a85hYGBgzGDKBVI8ypzfrbujHgFZDNnMCUy5bEy/KthvcqXBQA=

nosql@nosql:~$ curl -X PUT \  
> -H "Content-Type: text/plain" \ 
> -H "X-Riak-Vclock: a85hYGBgzGDKBVI8ypz/frbujHgFZDNnMCU 
y5bEy/KthvcqXBQA=" \  
> -d "Test string 01 updated" \ 
> http://localhost:8098/types/type001/buckets/bucket001/ 
keys/key001

nosql@nosql:~$ curl -X GET http://localhost:8098/types/type  
001/buckets/bucket001/keys/key001  
Test string 01 updated

2 4 0

Deleting objects

The delete command looks like this:

DELETE /types/<type>/buckets/<bucket>/keys/<key>/

and you can use it as it is shown below:

nosql@nosql:~$ curl http://localhost:8098/types/type001/buc  
kets/bucket001/keys/key002  
Test string 02 updated

nosql@nosql:~$ curl -X DELETE http://localhost:8098/types/t  
ype001/buckets/bucket001/keys/key002

nosql@nosql:~$ curl http://localhost:8098/types/type001/buc  
kets/bucket001/keys/key002  
not found

2 4 1

5 4 2

Bibliography
[AC] Apache Cassandra

1. What is Data Modeling?, retrieved 2020-04-24,
https://cassandra.apache.org/doc/latest/data_modeling/
intro.html#what-is-data-modeling

2. Query-driven modeling, retrieved 2020-04-24,
https://cassandra.apache.org/doc/latest/data_modeling/
intro.html#query-driven-modeling

[ACDB] Apache Couch DB

1. Introduction to Views, retrieved 2020-05-29,
https://docs.couchdb.org/en/stable/ddocs/views/intro.html

[ATP] Apache Tinker Pop

1. Apache TinkerPop Documentation, available from TinkerPop
Compendium web page (under the Reference Documentation link),
retrieved 2020-19-18,
https://tinkerpop.apache.org/docs/current/

[BDC] Big Data Characteristics

1. Big Data characteristics, retrieved: 2019-02-16,
https://fulmanski.pl/tutorials/computer-science/big-data/
big-data-concepts-and-terminology/#big_data_characteristics

2. Arockia Panimalar S., Varnekha Shree S., Veneshia Kathrine, The 17
V’s Of Big Data, International Research Journal of Engineering and
Technology (IRJET), Volume: 04, Issue: 09, Sep-2017, pp. 329-333
retrieved 2020-10-06,
https://www.irjet.net/archives/V4/i9/IRJET-V4I957.pdf

5 4 3

https://cassandra.apache.org/doc/latest/data_modeling/intro.html#what-is-data-modeling
https://cassandra.apache.org/doc/latest/data_modeling/intro.html#query-driven-modeling
https://docs.couchdb.org/en/stable/ddocs/views/intro.html
https://tinkerpop.apache.org/docs/current/
https://tinkerpop.apache.org/docs/current/
https://fulmanski.pl/tutorials/computer-science/big-data/big-data-concepts-and-terminology/#big_data_characteristics
https://www.irjet.net/archives/V4/i9/IRJET-V4I957.pdf
https://www.irjet.net/archives/V4/i9/IRJET-V4I957.pdf

3. Nawsher Khan, Arshi Naim, Mohammad Rashid Hussain, Quadri
Noorulhasan Naveed, Naim Ahmad, Shamimul Qamar, The 51 V's
Of Big Data: Survey, Technologies, Characteristics, Opportunities,
Issues and Challenges, COINS '19: Proceedings of the International
Conference on Omni-Layer Intelligent SystemsMay 2019, pp. 19-24,
retrieved 2020-10-06,
https://doi.org/10.1145/3312614.3312623

[BLOB]

1. The true story of BLOBs, retrieved: 2020-02-12,
https://web.archive.org/web/20110723065224/http://
www.cvalde.net/misc/blob_true_history.htm

[CAP] CAP Theorem

1. CAP theorem, retrieved 2021-01-26,
https://en.wikipedia.org/wiki/CAP_theorem

[CPU]

1. Xeon, https://en.wikipedia.org/wiki/Xeon#3000-series_"Conroe"

2. CPU Mega List, https://www.cpubenchmark.net/
CPU_mega_page.html

3. Year on Year Performance, Updated 28th of January 2021, https://
www.cpubenchmark.net/year-on-year.html

[CURL] cURL

1. cURL Command Tutorial with Examples, retrieved 2020-05-29,
https://www.booleanworld.com/curl-command-tutorial-examples/

2. curl FAQ, retrieved 2020-05-24,
https://curl.haxx.se/docs/faq.html

5 4 4

https://doi.org/10.1145/3312614.3312623
https://doi.org/10.1145/3312614.3312623
https://doi.org/10.1145/3312614.3312623
https://web.archive.org/web/20110723065224/http://www.cvalde.net/misc/blob_true_history.htm
https://en.wikipedia.org/wiki/CAP_theorem
https://www.booleanworld.com/curl-command-tutorial-examples/
https://curl.haxx.se/docs/faq.html

[CQL] Cypher Query Language

1. Cypher Query Language, retrieved 2020-09-11,
https://neo4j.com/developer/cypher/

2. Neo4j Cypher Refcard, retrieved 2020-09-11
https://neo4j.com/docs/cypher-refcard/current/

3. Cypher, The Graph Query Language. The Standard Query
Language for Graph Database Technology, retrieved 2020-09-11,
https://neo4j.com/cypher-graph-query-language/

4. Neo4j Console, retrieved 2020-10-08,
http://console.neo4j.org

5. Neo4j Sandbox, retrieved 2020-10-08,
https://neo4j.com/sandbox

6. Neo4j Cypher Manual: Syntax: Values and types, retrieved
2020-10-08,
https://neo4j.com/docs/cypher-manual/current/syntax/values/

[CRR] Codd's Relational Rules

1. E. F. Codd, Is Your DBMS Really Relational?, Computerworld, Oct.
14, 1985.

2. Codd’s Twelve Rules, retrieved 2020-04-06,
https://computing.derby.ac.uk/c/codds-twelve-rules/

3. Joe Celko, Joe Celko's Data and Databases: Concepts in Practice,
The Morgan Kaufmann Series in Data Management Systems,
Morgan Kaufmann; 1 edition (August 10, 1999), p. 244-246.

[D] Data

5 4 5

https://neo4j.com/developer/cypher/
https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/cypher-graph-query-language/
http://console.neo4j.org
https://neo4j.com/sandbox
https://neo4j.com/docs/cypher-manual/current/syntax/values/
https://computing.derby.ac.uk/c/codds-twelve-rules/

1. Data, retrieved: 2020-02-16,
https://en.wikipedia.org/wiki/Data

[DB] Data Base

1. DBMS Keys: Primary, Candidate, Super, Alternate and Foreign
(Example), retrieved 2020-04-30,
https://www.guru99.com/dbms-keys.html

2. Markus Winand, Row Pattern Matching in SQL:2016, Published on
Mar 8, 2017, retrieved 2020-09-03,
https://www.slideshare.net/MarkusWinand/row-pattern-
matching-in-sql2016

3. Learn PostgreSQL Recursive Query By Example, retrieved
2020-09-04,
https://www.postgresqltutorial.com/postgresql-recursive-
query/

4. Recursive CTE’s, retrieved 2020-09-04, 
https://www.essentialsql.com/recursive-ctes-explained/

5. Recursive SQL Queries with PostgreSQL, retrieved 2020-09-05,
https://towardsdatascience.com/recursive-sql-queries-with-
postgresql-87e2a453f1b

6. WITH (Common Table Expressions), MySQL 8.0 Reference
Manual, retrieved 2020-10-19,
https://dev.mysql.com/doc/refman/8.0/en/with.html

7. To find infinite recursive loop in CTE, retrieved 2020-10-20,
https://stackoverflow.com/a/31745768

8. Ben Richardson, Working with XML Data in SQL Server, October
11, 2019, retrieved 2020-09-03,
https://www.sqlshack.com/working-with-xml-data-in-sql-
server/

5 4 6

https://en.wikipedia.org/wiki/Data
https://www.guru99.com/dbms-keys.html
https://www.guru99.com/dbms-keys.html
https://www.slideshare.net/MarkusWinand/row-pattern-matching-in-sql2016
https://www.postgresqltutorial.com/postgresql-recursive-query/
https://www.essentialsql.com/recursive-ctes-explained/
https://towardsdatascience.com/recursive-sql-queries-with-postgresql-87e2a453f1b
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://stackoverflow.com/a/31745768
https://www.sqlshack.com/working-with-xml-data-in-sql-server/

9. Andrew Eisenberg, Jim Melton, SQL/XML is Making Good
Progress, ACM SIGMOD Record, Volume 31, Number 2, June 2002,
retrieved 2020-09-03,
https://sigmodrecord.org/publications/sigmodRecord/0206/
standard.pdf

10. J. E. Funderburk, S. Malaika, B. Reinwald, XML programming with
SQL/XML and XQuery, IBM SYSTEMS JOURNAL, VOL 41, NO 4,
2002, pp. 642-665, retrieved 2020-09-03,
http://ict.udlap.mx/people/carlos/is346/files/reinwald.pdf

11. Temporal database. Example, retrieved 2020-09-03,
https://en.wikipedia.org/wiki/Temporal_database#Example

12. Peter Vanroose, Temporal Data & Time Travel in PostgreSQL,
FOSDEM 2015 - PGDay 30 January 2015 Marriott Hotel, Brussels,
retrieved 2020-09-03,
https://wiki.postgresql.org/images/6/64/
Fosdem20150130PostgresqlTemporal.pdf

[GatDai] Alan Gates, Daniel Dai, Programming Pig, Second edition,
O'Reilly Media, 2016.

[GOO] GOogle research

1. https://research.google.com/archive/gfs.html, retrieved
2020-05-05,
https://research.google.com/archive/gfs.html

2. https://research.google.com/archive/mapreduce.html, retrieved
2020-05-05,
https://research.google.com/archive/mapreduce.html

3. https://research.google.com/archive/bigtable.html, retrieved
2020-05-05,
https://research.google.com/archive/bigtable.html

5 4 7

https://sigmodrecord.org/publications/sigmodRecord/0206/standard.pdf
https://sigmodrecord.org/publications/sigmodRecord/0206/standard.pdf
http://ict.udlap.mx/people/carlos/is346/files/reinwald.pdf
http://ict.udlap.mx/people/carlos/is346/files/reinwald.pdf
https://en.wikipedia.org/wiki/Temporal_database#Example
https://wiki.postgresql.org/images/6/64/Fosdem20150130PostgresqlTemporal.pdf
https://research.google.com/archive/gfs.html
https://research.google.com/archive/mapreduce.html
https://research.google.com/archive/bigtable.html

[GRE] Gremlin

1. Kelvin R. Lawrence, PRACTICAL GREMLIN: An Apache TinkerPop
Tutorial, Version 283-Preview, September 3rd 2020, retrieved
2020-09-18,
http://kelvinlawrence.net/book/Gremlin-Graph-Guide.html

2. Gremlin steps (instruction set) in Gremlin (query language),
retrieved 2020-09-18,
https://en.wikipedia.org/wiki/Gremlin_(query_language)

3. Graph Traversal Steps in TinkerPop Documentation
retrieved 2020-10-06,
https://tinkerpop.apache.org/docs/current/reference/#graph-
traversal-steps

[HA] High Availability

1. Amazon S3, retrieved 2019-01-03,
https://aws.amazon.com/s3/

2. Marcin Szeliga, Wysoka dostępność serwerów SQL. Klastry
niezawodności infrastruktury, IT professional, 11/2018, p. 28.

[HMD] How Much Data

1. Data Never Sleeps 5.0, retrieved: 2019-02-16,
https://www.domo.com/learn/data-never-sleeps-5,

2. How Much Data Is Generated Every Minute?, retrieved:
2019-02-16,
https://www.socialmediatoday.com/news/how-much-data-is-
generated-every-minute-infographic-1/525692/

3. How Much Data is Created on the Internet Each Day?, retrieved:
2019-02-16,

5 4 8

http://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
http://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://en.wikipedia.org/wiki/Gremlin_(query_language)
https://aws.amazon.com/s3/
https://www.domo.com/learn/data-never-sleeps-5
https://www.socialmediatoday.com/news/how-much-data-is-generated-every-minute-infographic-1/525692/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/

https://blog.microfocus.com/how-much-data-is-created-on-the-
internet-each-day/

4. How much data do we create every day?, retrieved: 2019-02-16,
https://techstartups.com/2018/05/21/how-much-data-do-we-
create-every-day-infographic/

5. How Much Data Do We Create Every Day? The Mind-Blowing
Stats Everyone Should Read, retrieved: 2019-02-16,
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-
much-data-do-we-create-every-day-the-mind-blowing-stats-
everyone-should-read/#430a855960ba

6. Dhaval Shah, Millions of data points flying in tight formation. Part
2: How Big Data could improve commercial aviation safety,
December 19, 2014, retrieved 2021-02-04,
https://www.aerospacemanufacturinganddesign.com/article/
millions-of-data-points-flying-part2-121914/

7. Stacey Higginbotham, Sensor Networks Top Social Networks for
Big Data, September 13, 2010, retrieved 2021-02-04,
https://gigaom.com/2010/09/13/sensor-networks-top-social-
networks-for-big-data-2/

8. Sarah Charley, 10 years of LHC physics, in numbers, 03/30/20,
retrieved 2021-02-04,
https://www.symmetrymagazine.org/article/10-years-of-lhc-
physics-in-numbers

9. Michelle Starr, Less Than 1% of Large Hadron Collider Data Ever
Gets Looked At, 6 January 2019, retrieved 2021-02-04,
https://www.sciencealert.com/over-99-percent-of-large-
hadron-collider-particle-collision-data-is-lost

10. Processing: What to record?, retrieved 2021-02-04,
https://home.cern/science/computing/processing-what-record

5 4 9

https://techstartups.com/2018/05/21/how-much-data-do-we-create-every-day-infographic/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#430a855960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#430a855960ba
https://www.aerospacemanufacturinganddesign.com/article/millions-of-data-points-flying-part2-121914/
https://www.aerospacemanufacturinganddesign.com/article/millions-of-data-points-flying-part2-121914/
https://www.aerospacemanufacturinganddesign.com/article/millions-of-data-points-flying-part2-121914/
https://gigaom.com/2010/09/13/sensor-networks-top-social-networks-for-big-data-2/
https://gigaom.com/2010/09/13/sensor-networks-top-social-networks-for-big-data-2/
https://www.symmetrymagazine.org/article/10-years-of-lhc-physics-in-numbers
https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-particle-collision-data-is-lost
https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-particle-collision-data-is-lost
https://home.cern/science/computing/processing-what-record

11. Processing LHC data, retrieved 2021-02-04,
https://videos.cern.ch/record/1541893
available at: Processing: What to record?,
https://home.cern/science/computing/processing-what-record

12. 7 Key Facts and Figures – CERN Data Centre, As of 1 June
2018_V1, retrieved 2021-02-04,
https://information-technology.web.cern.ch/sites/
information-technology.web.cern.ch/files/
CERNDataCentre_KeyInformation_01June2018V1.pdf

13. Mélissa Gaillard, CERN Data Centre passes the 200-petabyte
milestone, 6 July, 2017, retrieved 2021-02-04,
https://home.cern/news/news/computing/cern-data-centre-
passes-200-petabyte-milestone

14. 9 A. M. M. Scaife, Big telescope, big data: towards exascale with
the Square Kilometre Array, 20 January 2020, https://doi.org/
10.1098/rsta.2019.0060, retrieved 2021-02-04,
https://royalsocietypublishing.org/doi/10.1098/
rsta.2019.0060

15. Sarah Binns, The World’s Largest Telescope Will Generate More
Data Than the Entire Internet 5 min read, retrieved 2021-02-04,
https://academicstories.com/story/inspiring-ideas/the-world-
s-largest-telescope-will-generate-more-data-than-the-entire-
internet

16. By Brian Kent and Joseph Masters, Day and night, we’re mapping
the sky (and producing terabytes of data), August 20, 2018,
retrieved 2021-02-04,
https://public.nrao.edu/blogs/how-much-data/

17. Storage. What data to record, retrieved 2021-04-02,
https://home.cern/science/computing/storage

[HTTP] HTTP

5 5 0

https://videos.cern.ch/record/1541893
https://home.cern/science/computing/processing-what-record
https://information-technology.web.cern.ch/sites/information-technology.web.cern.ch/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://information-technology.web.cern.ch/sites/information-technology.web.cern.ch/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0060
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0060
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0060
https://academicstories.com/story/inspiring-ideas/the-world-s-largest-telescope-will-generate-more-data-than-the-entire-internet
https://academicstories.com/story/inspiring-ideas/the-world-s-largest-telescope-will-generate-more-data-than-the-entire-internet
https://academicstories.com/story/inspiring-ideas/the-world-s-largest-telescope-will-generate-more-data-than-the-entire-internet
https://public.nrao.edu/blogs/how-much-data/
https://public.nrao.edu/blogs/how-much-data/
https://public.nrao.edu/blogs/how-much-data/
https://home.cern/science/computing/storage

1. RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing 3. Message Format, retrieved 2020-08-29,
https://tools.ietf.org/html/rfc7230#section-3

[JS] Java Script

1. A brief history of JSON, retrieved 2020-05-11,
https://blog.sqlizer.io/posts/json-history/

2. Standard ECMA-404. The JSON Data Interchange Syntax,
retrieved 2020-05-10,
https://www.ecma-international.org/publications/standards/
Ecma-404.htm

[McCreKel] Daniel G. McCreary and Ann M. Kelly, Making Sense of
NoSQL. A guide for managers and the rest of us, Manning
Publications, 2013.

[MIS] Miscellaneous

1. 25 Most Famous Libraries Of The World, retrieved: 2020-03-07,
http://www.mastersinlibraryscience.net/25-most-famous-
libraries-of-the-world/

2. THE BEST LIBRARIES IN THE WORLD, retrieved: 2019-03-07,
https://www.thebestcolleges.org/amazing-libraries/

3. Why 7 Seconds Could Make or Break Your Mobile App, retrieved
2020-04-20,
https://asostack.com/why-7-seconds-could-make-or-break-your-
mobile-app-f41000fb2a17

4. UX best practices: How to design scannable app screenshots,
retrieved 2020-04-20,
https://www.freecodecamp.org/news/ux-best-practices-how-to-
design-scannable-app-screenshots-89e370bf433e/

5 5 1

https://tools.ietf.org/html/rfc7230#section-3
https://tools.ietf.org/html/rfc7230#section-3
https://blog.sqlizer.io/posts/json-history/
https://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.mastersinlibraryscience.net/25-most-famous-libraries-of-the-world/
https://www.thebestcolleges.org/amazing-libraries/
https://asostack.com/why-7-seconds-could-make-or-break-your-mobile-app-f41000fb2a17
https://www.freecodecamp.org/news/ux-best-practices-how-to-design-scannable-app-screenshots-89e370bf433e/

[MRvsDaC] MapReduce vs classic divide-and-conquer approach,
retrieved 2020-05-05,
https://fulmanski.pl/tutorials/computer-science/big-data/
processing-concepts-for-big-data/
#types_batch_map_reduce_vs_divide_and_conquer

[NewSQL]

1. The beginning of the end of NoSQL, retrieved 2020-01-29,
https://blogs.the451group.com/information_management/
2010/11/12/the-beginning-of-the-end-of-nosql/

2. What we talk about when we talk about NewSQL, retrieved
2020-01-29,
https://blogs.the451group.com/information_management/
2011/04/06/what-we-talk-about-when-we-talk-about-newsql/

3. Andrew Pavlo, Matthew Aslett, What’s Really New with NewSQL?,
CM SIGMOD Record, 45, . (2016), pp. 45-55, retrieved 2020-01-29,
https://db.cs.cmu.edu/papers/2016/pavlo-newsql-
sigmodrec2016.pdf

4. Michael Stonebraker New SQL: An Alternative to NoSQL and Old
SQL For New OLTP Apps, retrieved 2020-01-29,
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-
alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

[RBE] Rule Based Engine

1. Drools, retrieved 2020-09-08,
https://www.drools.org

2. Jess, retrieved 2020-09-08,
https://jess.sandia.go

[TSDB] Time Series Data Base

5 5 2

https://fulmanski.pl/tutorials/computer-science/big-data/processing-concepts-for-big-data/#types_batch_map_reduce_vs_divide_and_conquer
https://blogs.the451group.com/information_management/2010/11/12/the-beginning-of-the-end-of-nosql/
https://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://www.drools.org
https://jess.sandia.gov

1. DBMS popularity broken down by database model, retrieved
2021-02-01,
https://db-engines.com/en/ranking_categories

2. Understanding Metrics and Time Series, in: OpenTSDB 2.4
documentation, retrieved 2021-02-06,
http://opentsdb.net/docs/build/html/user_guide/query/
timeseries.html

3. Ted Dunning, Ellen Friedman, Time Series Databases. New Ways
to Store and Access Data, 2015, O’Reilly.

4. Why NOT to Build a Time-Series Database, Outlyer, Nov 7, 2018,
retrieved 2021-02-05
https://medium.com/dataseries/why-not-to-build-a-time-
series-database-e1e63a535357

5. OpenTSDB FAQ, retrieved 2021-02-10,
http://opentsdb.net/faq.html

[X] XML and related things

1. Web Toolkit Online. XPath Tester, retrieved 2020-05-13,
https://www.webtoolkitonline.com/xml-xpath-tester.html

2. Code Beautify. XPath Tester, retrieved 2020-05-13,
https://codebeautify.org/Xpath-Tester

3. Blooming FLWOR - An Introduction to the XQuery FLWOR
Expression, retrieved 2020-05-13,
www.stylusstudio.com/xquery-flwor.html

4. Wikipedia:XML_Schema_(W3C):Criticism, retrieved 2020-08-29,
https://en.wikipedia.org/wiki/XML_Schema_(W3C)#Criticism

[???BOOK???]

5 5 3

https://db-engines.com/en/ranking_categories
http://opentsdb.net/docs/build/html/user_guide/query/timeseries.html
https://medium.com/dataseries/why-not-to-build-a-time-series-database-e1e63a535357
http://opentsdb.net/faq.html
https://www.webtoolkitonline.com/xml-xpath-tester.html
https://codebeautify.org/Xpath-Tester
http://www.stylusstudio.com/xquery-flwor.html
http://www.stylusstudio.com/xquery-flwor.html
https://en.wikipedia.org/wiki/XML_Schema_(W3C)#Criticism

	NoSQL Theory and examples
	Early Access Version Edition 1.0, October 2021
	Preface
	SQL, NoSQL, NewSQL
	Data and database
	SQL
	Big Data – big problem with data
	NoSQL
	NewSQL
	Summary

	SQL Relational model
	Toward relational supremacy
	Relational theory key concepts
	Normal forms
	Transactional model and ACID
	Codd's relational rules
	Keep SQL in the mainstream
	Summary

	NoSQL
	Motivations
	BASE
	CAP theorem
	Consistency
	Summary

	Column family stores
	The origins
	Hadoop
	HBase
	Summary
	Working with HBase

	Key-value stores
	Basic ideas
	Key-value stores vs. relational databases
	Essential features of key-value databases
	Key is the key
	Values
	Summary
	Working with Riak

	Document stores
	Basic ideas
	Document stores vs. relational databases
	Summary
	Working with Apache CouchDB – CRUD basics
	Working with Apache CouchDB – querying

	Graph stores
	Do we really need another one database type?
	Basic ideas
	Graph stores design
	Summary
	Working with Gremlin
	Working with Neo4j

	Column databases
	Basic ideas

	Time series databases
	Everything changes New trends of XXI century
	Do we really need time series databases?
	Data model
	Working with OpenTSDB

	Apache Pig
	What Apache Pig is
	Pig Latin
	Working examples – basic informations
	Working examples – beyond basic
	Summary

	JSON
	Overview
	Syntax

	XML
	Overview
	Tools

	HTTP
	Overview
	Tools

	SQL recursive queries
	Common table expressions
	Recursive queries

	Bibliography
	Tables and figures

