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Preface


Why


In academic year 2017/2018 I introduced to didactic cycle on the faculty 
I have been working a new lecture: Big Data Engineering (formally: 
Engineering of Big Data Processing). You may ask: Why not simply "Big 
Data"? Is term engineering really necessary? I thought that Big Data are 
much different than "classic" data sets. The way you should think about 
it is different then data you used to work with. If you can apply everyday 
techniques you know well, there would be no need to talk about 
different kind of data; you will still consider just data. Prefix "big" 
suggests that you deal with something which is not any more a "typical" 
data. If not typical, why you should use typical techniques to process it? 
And this is the point. Big data, as a type of data, require different 
procedures to work with them. All practical aspects are different. You 
may say that engineering of big data processing is different. That is why 
the tile is Engineering of big data processing. I don't want to make 
another one book about big data where you can find (again) the same 
information that someone has already provided somewhere. Every 
body talk about big data but nobody talk about engineering of 
big data. Nobody talk that the way you perceive this type of data must 
be different. You can find tones of big data blogs and examples 
where people solves problems which may be solved using old-
school data processing approach. This is not big data. In this 
book I'm going to convince you that you have to change the 
way you think about data which are big. If you feel you don't 

x i



have to do this, your data are not big. At most there is a lot of 
data, but it is not big data.


Who this book is for


This book is addressed to all the people who want to understand 
how Big Data differs from Data and why they should be 
treated different way. It may be good both for someone with no 
computer scientist background and for those who have some IT 
experience but want to put in correct order the whole dispersed 
knowledge one may have. I don’t want to dive deep into details of 
specific technologies or solutions. Instead of that, I want to explain 
why things are as they are. Whenever it is possible I present a 
general way of thinking.


Early access


This book is a work in progress, presented in early access version. Early 
access allows to publish and share some ideas before the final version 
appears. This way, participating in early access, you may contribute how 
the final version will look like. English is not my native language and I 
know that I make a lot of mistakes but I hope that text is more than 
readable and at least a little bit understandable. I believe that everything 
can be better and there is always a space for improvements. I can say 
that the Toyota Way is the way I live and work focusing on continuous 
improvement, and respect for people. That is why I would be very 
grateful if you somehow contribute improving this book. Any 
comments, corrections and suggestions are more than welcome. I write 
this book not for myself but to share what I know with others, so help 
me make it’s contents better.


If this book is buggy or not complete yet why it’s not free? Simply 
because I need money to finish it and to make it better. Everything 
costs. The most precious is time. I, as all other people, have to work to 
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live and to support my family. And this consumes most of my days. 
Then I have a choice: play with kids or write a book. I choose playing 
with kids. I don’t want to reduce a time spent with my family because I 
don’t want to be a virtual parent. So I have just a little time for book. If I 
could reduce my job engagement (from full-time to half-time) I could 
spend more time on book. 


I believe that there is no book like this on the market and I want to 
make it better and better. I can do this. I don’t have to ask publisher if 
they agree to prepare another version. If something deserves for 
improvement I simply do this and publish right after that. Paying for a 
book you allow me to spending more time on book without sacrificing 
my family life. Having money I can pay for professional translation, text 
correction or simply buy better images.


What will you learn in this book?


I don’t want to write this book and forget. My idea is to keep it as 
accurate and up to date as it is only possible so you can expect updates 
in a future even if I reach stable “final” version. As I wrote above, always 
there is something to improve. As for now book covers the following 
topics (chapter titles highlighted in red indicate finished or, if stated 
explicitly, in progress content).


Preface This is what you are reading right now. Here I explain what 
you can expect in this book. I also try to convince you to actively 
participate in shaping it’s contents.


Chapter 1 Introduction In this chapter I try to define what Big Data 
is and why you shouldn't think about it as a "normal" data.


Chapter 2 Cleansing, transforming, and integrating data 
TODO


Chapter 3 Big Data concepts and terminology TODO
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Chapter 4 Big Data paradigms TODO


Chapter 5 Storage concepts for Big Data TODO


Chapter 6 Processing concepts for Big Data TODO


What you will NOT learn in this book?


This book is not intended to be a user guide for a given Big 
Data technology or software. Even if I use some software I do this 
to show key features of a whole class of similar solutions, their pros and 
cons. Today everything changes so fast that it may happen that software 
used in examples is no more supported. Writing a book is a time 
consuming task and, especially in IT area, some fact described at the 
beginning of the book ma be outdated when author complete final 
chapters. It does not change the general nature of the considerations 
contained in this book as I made an effort to present base, universal and 
essential features which is quite common among different solutions of 
the same type. That is why you will not find a chapters devoted to 
installation or configuration (except some simple cases when 
necessary).


The number of topics covered in this book is quit big, and it shouldn’t 
surprise you that some of them are only announced. There is no way to 
fully describe all of them. I don't think it's possible to know everything. 
There's a tremendous amount of information we get every day because 
the technology is evolving so fast. Let me know if you think that 
some parts should be described in more details or in a 
completely different way.


Give this book a try, and please let me know what you think. Any 
feedback is very much encouraged and welcomed! If you think that my 
time is worth this effort, you can support what I’m doing now and help 
me finalize this project. Please use email (book@fulmanski.pl) or 
GitHub (https://github.com/fulmanp/Engineering-of-Big-Data-
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Processing/issues) to give your positive or negative, but in all cases 
constructive, feedback.


Thank you for your engagement.


Piotr Fulmański 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Conventions used in this book


For your convenience I will use the following typographical convention:


Italic 
Indicates new terms.


Italic 
Indicates old terms but for some reason I want to distinguish them from 
normal text flow, definitions, citations.


Constant width 
Indicates source code, filenames, file extensions, variables, parameters, 
etc.


Constant width 
Indicates commands or any other text that you should type literally (as 
it is given).


Constant width 
Indicates parts of scripts or commands which you need to pay special 
attention to.


Bold 
Indicates statements which you need to pay special attention to. 
Sometimes it is used in combination with previous styles, for example: 
Constant width with bolded part  
This way I will mark for example crucial parameter in some important 
command.


This is how source  
code is displayed
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This is how a terminal  
text is displayed with  
bolded command prompt.

Something worth to remember or just one-sentence summary of 
some part of a section or chapter.


RULE


Most important dos and don’ts while working with big data.


NOTE


Note block


I use this block to give you some additional explanation or information, 

possibly loosely related to a main text.
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CHAPTER 1


Introduction


What you will learn:


• Why big data requires its own engineering 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SECTION 1


Engineering


Engineering


The software engineering term is well established in computer science 
and IT industry. In short it is about the systematic application of 
engineering approaches to the development of software. There are a lot 
of materials devoted to this topic, so I'm not going to talk about it. 
Instead I will recall definition which fits to my understanding of this 
subject (Software Engineering at Google[SOFENG:1]):


'software engineering' encompasses not just the act of writing code, 
but all of the tools and processes an organization uses to build and 
maintain that code over time. [...] Software engineering can be 
thought of as 'programming integrated over time.


Over all I prefer definition attributed to Ian Sommerville[SOFENG:1] 
because of it's compactness:


an engineering discipline [...] is concerned with all aspects of software 
production.


[...] all aspects of software production -- mostly all practical aspects. 
The term embodying the advocacy of a specific approach to computer 
programming when we should think about making software as an 
engineering enterprise rather than an art or a craft. In some sense, 
software engineering is about best software production practices. It help 
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you to focus on what, how and when you should do to create and then 
maintain your software.


As you can read in Preface, my opinion is that big data is much different 
than data. If this were not the case, then why would a new term such as 
big data be introduced? If you can apply everyday techniques you know 
well, there would be no need to talk about different kind of data; you 
will still consider just data. Prefix "big" suggests that you deal with 
something which is not typical data. If not typical, why you should use 
typical techniques to process it? And this is the point. Big data, as a type 
of data, require different procedures to work with them. All practical 
aspects are different. You can say, that engineering of big data 
processing is different.


It's not about best practise


Avoid to use best practise term as it kills innovations and leads to 
stagnation.


TODO


What people say about big data


Before I move on to the main part of the material, it is quite didactic to 
stop for a while and see what people say about big data. How they define 
it, how they perceive it. This may help me or you to focus on the most 
confusing concepts, highlighting what is essential part of working with 
big data and demystify the most common misunderstandings.
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CHAPTER 2


Cleansing, transforming, 
and integrating data


What you will learn:


• What makes data to be considered as big


• How you can describe data


• What is data polymorphism


• Different data usefulness -- what data may brings to you and how 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SECTION 1


ETL – Extract, Transform 
and Load


ETL term is used for the general procedure of copying data from one or 
more sources into a destination system which represents the data 
differently from the source. It is divided into three steps:


• Data extraction involves retrieving data from homogeneous or 
heterogeneous sources.


• Data transformation processes data by three sub-steps:


• data cleansing,


• data transforming,


• data integration.


• Data loading describes the insertion of data into the final target 
system.


A properly designed ETL process extracts data from the source systems, 
enforces data quality and consistency standards, conforms data so that 
separate sources can be used together, and finally provide data in a 
ready to use format so that data may be used by developers, applications 
or directly by end users making decisions based on them.
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Data extraction and data load, to a limited extent, is the subject of this 
chapter. Data transformation is discussed in the next chapter.


ELT – EXTRACT, LOAD AND TRANSFORM


TODO


ETL OR ELT


TODO


GOLDEN RULE OF EVERY DATA SCIENTIST


ETL process may be very simple, like typical copy. Unfortunately, this is 
not a typical case. Usually you will change your data somehow in a way 
which may be irreversible. For example, if you cast doubles to integers 
or decrease image resolution there is no method to restore fractional 
part based on integers or increase image resolution and get back to 
original values. The golden rule of every data scientist is to always keep 
a copy of your original data.


A lways keep a copy of your original data. 

Remember: storage space is cheaper than retrieval data again and 
sometimes repeating the getting data process is even impossible. 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SECTION 2


Data or garbage


Preventing garbage in to not get garbage out


Great, you are happy. You have your data. But this is just the beginning 
of a hard way. At the end of it, you will find a final presentation and 
automation (with AI – artificial intelligence, ML – machine learning) 
step proceeded by data exploration and data modeling steps. Before you 
reach it, you have to survive a long journey which, as every journey, is 
demanding, full of pitfalls and unpredictable traps. As every traveler, to 
minimize the risk of failure, you have to be equipped with tools you can 
rely on. In the world of data science it means that you have to use data 
that are clear, correct, consistent and in the right form.


In the world of data science you have to use data that are clear, 
correct, consistent and in the right form.


The data received from the data retrieval phase is likely to be "a 
diamond in the rough". Your task is to sanitize and prepare it for use in 
subsequent phase. Doing so correctly is extremely important important 
for future processes. Why? There is a very simple answer: GIGO. What? 
GIGO – Garbage in, garbage out is a classic saying in computing about 
how problematic input data or instructions will produce problematic 
outputs. Let's be more literal: flawed, or nonsense (garbage) input data 
produces nonsense output. This distinction is important: with bad data 
you will not have problems as much as you will get nonsense, idiotic and 
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useless results. You can solve problems, but you can't fix something that 
is wrong from the ground up. This is especially relevant in ML. RIRO –
rubbish in, rubbish out is an alternate wording for this concept. 
According to the CrowdFlower survey [Data:1], data preparation and 
cleaning take more than 50% of the time of data scientists and analytics 
professionals. This does not take into account the time needed to first 
collect and aggregate the required data for the problem at hand. 
According to the Toyota Way principle number 5: Build a culture of 
stopping to fix problems, to get quality right the first time. Other 
words, fix whatever you are working on as early as you detect any 
problems even if you have to stop in progress. It’s a good habit to 
correct data errors as early on in the process as possible. The best is to 
completely avoid data errors. If this is not possible, try to minimize 
errors making data cleansing, transforming, and integrating. All of this 
steps fit into general transform phase in ETL process.


Cleansing data


Data cleansing focuses on removing errors and inconsistency in your 
data.


A good practice is to mediate data errors as early as possible in the data 
collection chain and to fix as little as possible inside your program while 
fixing the origin of the problem.


Now that we’ve given the overview, it’s time to explain these errors in 
more detail.


DATA ENTRY ERRORS


Data collection and data entry are error-prone processes. Especially 
when performed by human. Errors can arise from:


• loss of concentration (instead od 1.75 you may enter 17.5),
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• typos like omission of a letter, swapping letters in places, entering an 
incorrect letter (instead of frequency you may enter frequeny, 
freqeuncy or freguency),


• human sloppiness (instead of MiB you may enter mB).


But data collected by machines or computers isn’t free from errors 
either and arise from:


• machine or hardware failure,


• transmission errors,


• bug in one of the stage of data processing pipeline.


As an example, consider NMEA 0183 protocol (briefly referred to as 
NMEA) which is widely used in marine navigation electronics and GPS 
devices. The data is transmitted as sentences written in ASCII code. A 
single sequence contains up to 82 characters. The character starting the 
data in the protocol is $, followed by the sentence identifier and the data 
fields separated by commas, and finally the symbols <CR><LF> 
(carriage return, line feed). Below I present two sentences of this 
protocol — correct and incorrect:


$GPGLL,5149.66629,N,01925.96178,E,202100.00,A,A*62  
$GPGLL,5149.66647,N,01925.9$GPRMC,202102.00,A,5149.66679,N,0192
5.96219,E,0.117,,230721,,,A*7A

As you can see, in the middle of the second GPGLL sentence another one 
(GPRMC) starts (marked with red color). It's highly probable that when 
GPGLL was saving, the power was down and sequence was unexpectedly 
cut. After power was restored, recording continued just after the last 
character (9).


Another real life example concerns medical data:
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record | gender | height | weight |    Blood pressure  
number |        |        |        | systolic | diastolic  
-------+--------+--------+--------+----------+----------  
1       1        151       67      120        80  
2       1        157       93      130        80  
3       1         55       81      130        90  
4       1         57       61      130        90  
5       1        170       64       10        70  
6       2        168       59     -150        80  
7       1        160      105      200        11000

Look closely at row number 3 and 4. Do you thing person of weight 81kg 
(178.5lb) or 61kg (134.5lb) may be 55cm (21.5in) or 57cm (22.5in) 
height? Or is this possible to have systolic blood pressure of value 
-150mm Hg or 10mm Hg (row 5 and 6). Diastolic blood pressure of 
value 11000mm Hg (row 7) should arouse our distrust as well.


If you think you will never be affected by this kind of error be aware that 
in 2013 a problem with scanners / copiers of the popular Xerox 
WorkCentre line was discovered that randomly altered numbers in 
pages that were scanned [BDP:1]. Patches of the pixel data were 
randomly replaced in a very subtle and dangerous way: the scanned 
images looked correct at first glance, even though some numbers 
actually were incorrect. As you can read in [BDP:1]:


We got aware of the problem by scanning some construction plan last 
Wednesday and printing it again. Construction problems contain a 
boxed square meter number per room. Now in some rooms, we found 
beautifully lay-outed, but utterly wrong square meter numbers. You 
really have to read the numbers to find out; this is why it is so hard to 
find out. In the present case, we found out because one room in the 
construction plan was — as the copy told us — about 22 square meters 
large, whereas the next room, a lot larger, was assigned a label with 
14 square meters.
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For example, a correct-looking scan at the first glance (check [BDP:1] to 
see an image of real scan):


  original                      copy  
 
110.000 54.60               110.000 54.80  
125.000 60.00               125.000 60.00  
140.000 65.40               140.000 85.40  
155.000 70.80               155.000 70.80  
170.000 76.20               170.000 76.20

contains an error. It was found because usually, in such cost tables, the 
numbers are sorted ascending.


The error does occur because image segments, that are considered as 
identical by the pattern matching engine (not OCR) of the Xerox scan 
copiers, are only saved once and getting reused across the page. If the 
pattern matching engine works not accurately, image segments get 
replaced by other segments that are not identical at all, e.g. a 6 gets 
replaced by an 8. This is not a simple pixel error — on scan one can 
clearly see the characteristic dent the 8 has on the left side in contrast to 
a 6.


What is worse, the errors were caused by an eight year old bug and were 
not related to OCR so this could have affected thousands of documents 
— nobody knows how many.


REDUNDANT WHITE CHARACTERS


White characters, especially whitespaces may turn out to be a nightmare 
for you — haven't you lost a few hours in your work because of a "bug" 
that was caused by whitespaces somewhere in a string?


Consider the following sentence: Let the force be with you. It might be 
difficult for you to say what is wrong in sentence: Let the force be with 
you.  or Let the force be  with you. It will be much easier if you compare 
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them with each other. The following sentences, although it may seem so, 
are not the same strings:


Let the force be with you.	 	  
Let the force be with you. 	 	  
Let the force be  with you.	 	  
 Let the force be with you.	 	  
	 Let the force be with you.	  
            Let the force be with you.	 


It gets less confusing if you use monospaced font and replace space with 
o and tab with <   TAB   >:


>Let the force be with you.<  
>Let the force be with you.o<  
>Let the force be owith you.<  
>oLet the force be with you.<  
><   TAB   >Let the force be with you.<  
>oooooooooooLet the force be with you.<

Remember, to remove all unwanted whitecharacters as early as 
possible. It should be a kind of unconditional reflex as in my case is 
saving my job every few new sentences I type in text editor — I don't 
think about this, simply I press Command + S and I don't trust 
autosave option.


LETTER MISMATCHES


Quite common type of error. You can distinguish few types:


• omission of a letter: Let the foce be with you;


• extra letter: Let the forcee be with you


• incorrect letter: Let the forse be with you
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• rearrangement the order of two adjacent characters: 
Let the force be wtih you;


• incorrect letter case: Let the forCe be with you.


Quite easy to catch if you only have a complete dictionary. May be 
difficult or even impossible to identify errors in proper noun like names 
of cities, clubs, bars, etc. as well as people's second names.


IMPOSSIBLE VALUES AND COHERENCE CHECK


Here you check the value against physically or theoretically impossible 
values such as systolic blood pressure of value -150mm Hg example 
given earlier or size of all files saved on hard drive which exceeds 
physical capacity.


OUTLIERS


An outlier is a data that seems to be distant from other of that class. You 
should identify them, save in log file, and pass to data scientist who will 
work with them. You may also ask the data provider if values much 
different than others are really correct. Never ever change them or 
"repair" on your own. Remember that outlier data may follow a different 
logic than data obtained from "normal" cases and can stil be valid. Valid 
or even very precious as they can provide informations about unknown, 
different than typical, cases.


TODO Add plot


DEALING WITH MISSING VALUES


If you have missing values in your data it does not automatically mean 
that something is wrong but for sure you should look at them carefully.


• Are missing values a problem for you at all?


• Why are they missing?
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• In which records?


• Are missing values correlated with any other values?


Very common, due to its simplicity, is setting missing value to null. 
However take into account that nulls are like dreadful poison and 
propagates in system like NaN (not a number) values in computations. 
When you decide to fix missing values, you have few methods to choose 
from (starting from the simplest to the most advanced):


Method Pros Cons

Omit the values Easy to perform You may lose the data. 
Sometimes entails the 
need to delete the entire 
record.

Use an arbitrary value 
such as 0 or the mean

Easy to perform


You don’t lose information  
from the other variables 
in the same record

Can lead to false 
estimations from a model

Imput a value from an 
estimated or theoretical 
distribution

Does not disturb the 
model if you only assume 
a correct and applicable 
estimation or data 
distribution (which may 
be not so simple and 
obvious)

Difficult to perform


You make data 
assumptions which may 
not correspond to reality
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DEVIATIONS FROM A CODE BOOK


A code book describes the type of data expected at each column as well 
as their "ranges":


Modeling the value Does not disturb the 
model if you only have a 
correct model which may 
not be so obvious

Difficult to perform — you 
should have or create a 
model which may be not 
simple


You make data 
assumptions which may 
not correspond to reality


Can lead to too much 
confidence in the model

Method Pros Cons

Type of data Range

Number All integers


All positive integers


Integers in range [-50,+50]

String Unlimited length


No longer than 30 characters


Exactly 10 characters


Exactly two words

Boolean 0 or 1


T or F


Y or N
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Validating your data against code book in most cases is fast and easy to 
perform.


PUT DATA ON A CORRECT ORDER


Sorting your data is a time consuming task. Think if you really need it. 
Sometimes it doesn't matter. For example, counting sum of all orders is 
not dependent on data order. Conversely, analysing time series data, 
like exchange rates, must preserve their order. Sometimes, even for non 
time series data you may want to keep them sorted because of they way 
you will use them. For example,


TODO SQL example


Transforming data


In cleansing stage you don't change your data. If something is correct 
you keep it as it is; if something is incorrect you fix it. Transforming 
stage is different — now you will change your data, in most cases, with 
future use in mind. Type and scope of transformation is dependent on 
the software, algorithms or processes you plan to use.


CHANGING DATA FORMAT


On computers every data is stored and processed as sequence of zeros 
and ones. To make it possible, these sequences are created in a specific 
way called a data representation format. Many different formats exists, 
and if you want, you can create your own. html, pdf, png, mp3, exe, 

Three state logic Yes, No, Unknown


1, 0, -1


Yes, No, Sometimes

Discrete set red, green, blue, white, black, yellow

Type of data Range
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docx, pptx — these are just a few of the elementary examples that you 
have surely heard. There are also formats dedicated to less complex 
data, like numbers (for example: IEEE 754; formally: IEEE Standard for 
Floating-Point Arithmetic) or characters (for example: UTF8, ISO 
8859-2). In most cases you change format to unify data and to make its 
processing possible.


For example, numbers like 1.1 and 2.2 do not have exact representations 
in binary floating point. In consequence 1.1 + 2.2 is display as 
3.3000000000000003 which is not what you expect to see. In binary 
floating point, the result of 0.1 + 0.1 + 0.1 - 0.3 is 
5.5511151231257827e-017. While near to zero, the differences prevent 
reliable equality testing and what is worse such errors accumulate. If 
handled incorrectly may be a source of many hard to find problems, 
incorrect analysis and results. That is why you should never use binary 
floating point for monetary data and replace it with decimal.


Another example concerns document transformation from XML to 
JSON or changing weight from pounds to kilograms.


CHANGING DATA RELATIONSHIPS


Sometimes relationships among data make difficult to analyse them. 
For example, if you look at Amazon's long-term stock line chart you may 
think that at the beginning, in 1999, company evolved very slow but 
started to grow very fast from 2015. This is because the increase in price 
from $56.74 to $86.09 in January and March 1999 is shown as if it was 
a meaningless move, and the stock appears to be almost standing still. 
But numbers say something different: increase of 51%. Contrary, in 
2018 prices $1447.34 (March) and $2012.71 (August) gives increase of 
39%. The difference is that the price of the Amazon stock hovered 
around $50 in January 1999, and in March 2018 hovered around $1400 
— the $50 change in 1999 and 2018 has different contribution to the 
stock price. As you can see, processing numerical data over a very wide 
range of values expressed in linear scale may hide data relations. That is 
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why it may be justified to transform your data to express them in 
nonlinear scale, very typically a kind of logarithmic scale.


TODO add image (AmazonStock)


REDUCING THE NUMBER OF VARIABLES


It's not surprising that in big data world you have a lot of data. 
Unfortunately, the more data you have, the more difficult is to say if you 
really need them. Having too many variables makes your model difficult 
to handle. In consequence it is always a good practice to verify your 
values if they are not redundant and bring you something useful. 
Redundancy in this context doesn't just mean exactly the same values 
but also data you may estimate with acceptable error using other, 
already owned, data.


PCA, Principal Component Analysis, is one of the technique you may 
use to reduce the number of variables. Consider the following exemplary 
set of data


TODO add image (PCA)


TURNING VARIABLES INTO DUMMIES


Trying to limit the number of data is by all means commendable but 
sometimes you have to do exactly the opposite — increase the number of 
variables. Whether it is actually increasing is hard to say. For example, 
imagine you have data you want to use as an input for artificial neural 
network. Base on the way artificial neural networks work, you should 
provide only pure numerical values. So how to code e.g. a day of the 
week. First attempt may be:


Monday:    1  
Tuesday:   2  
...  
Saturday:  7
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Although such a coding is theoretically correct (different numbers to 
denote different things) in practice values are too close, and may be 
skipped as irrelevant by neural network. It is much more better to use 
the following encoding:


Monday:    1,0,0,0,0,0,0  
Tuesday:   0,1,0,0,0,0,0  
...  
Saturday:  0,0,0,0,0,0,1

This way you artificially increase the number of data. In fact, you 
increase the size of input vector but not the size of data because seven-
components vector [0,0,0,1,0,0,0] still codes one day of the week, 
a Wednesday. In this case, you use dummy variables taking only one or 
zero to indicate the presence or absence of a categorical effect that may 
explain the observation. One is used as an indicator that something has 
happened on a given day and not any other.


PREPARE TIME DATA


Time data as no other data type is strongly related to time. You may take 
it for granted, but it has serious consequences. Every single time data 
has exact "location" on time axis. It means, that value is valid only at 
one point. Exactly at that point. It's not valid fraction of a time earlier or 
later. This significantly complicates the matter of processing such data. 
You should not assume that your time data has been collected at regular 
intervals. Of course, it would be best, but it is worth preparing for a 
different situation because in many cases you will work with unevenly 
spaced time series data.


Consider the following unevenly spaced time series data (time given in 
microseconds counted from sytem start):


number time  delta_time  value  
1      20     0          10  
2      29     9          15  
3      44    15          13  
4      58    14           8  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5      74    16           9  
6      87    13          15  
7     105    18          16  
8     141    36          20  
9     161    20          18  
10    169     8          15  
11    185    16           9

As you can see, time difference between the two samples (delta_time) 
is not constant. Sometimes, as for data 3, 4 and 5 it is almost constant 
and close to average delta time which is 15. Other time it takes value 
twice as big as average (data number 8). Most tools require (assume) 
constant delta_time. You have no choice and you have to 
"discretises" your data, choosing constant delta_time. In intervals 
you obtain this way, you may define value as average of every data point 
belonging to a given interval, minimum value or any other method you 
want. For delta_time = 10 you may obtain:


                                            discretised  
number time  delta_time  value  interval    time  value  
1      20     0          10     [ 20,  30)   25  
2      29     9          15     [ 20,  30)   25   (10+15)/2  
3      44    15          13     [ 40,  50)   45   13  
4      58    14           8     [ 50,  60)   55    8  
5      74    16           9     [ 70,  80)   75    9  
6      87    13          15     [ 80,  90)   85   15  
7     105    18          16     [100, 110)  105   16  
8     141    36          20     [140, 150)  145   20  
9     161    20          18     [160, 170)  164  
10    169     8          15     [160, 170)  165   (15+9)/2  
11    185    16           9     [180, 190)  185

TODO add data plot


Of course, making discretisation you introduce an error to your data. 
Even if constant difference between the two samples is not strictly 
required, you will have problems in next stage, the integration, as I will 
describe it in a moment later.


PREPARE TIME SENSITIVE DATA
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Among all time data I distinguish a special case of data which I name: 
time sensitive data. As all time data it is valid exactly at a given point on 
time axis, but what is more important, over time, the data is less and 
less suitable for use. Consider salary. 30 years ago you earned , now 
you earn  and probably . But does this mean that you actually 
earn more? Can you buy proportionally more? Does it make sens to use 
both  and  as they are now and prepare learning data for artificial 
neural network to decide if grant or not a loan for the purchase of a 
house? Trying to make a decision based on historical data may lead to 
nonsenses because  now is worth much less than 30 years ago. For 
currencies, prices, salaries etc. you should make a transformation to 
expres them in a new units making them independent of the influence 
of time passage.


This idea is not new. Have you ever heard about Big Mac Index? Created 
in 1986, is a price index published by The Economist as an informal way 
of measuring the currency purchasing power [XXX:1-2]. The main 
assumption is that a sample basket of goods and services should cost 
"the same" over time. It means that  amount of money 30 years ago 
and  today are "equal" if you could then, and you still can, afford the 
same things or services.


CALCULATE DERIVED AND AGGREGATED VALUES


This type of transformation is intended to simplify and speed up 
processing. It is not so rare that anticipating future needs or the way 
data will be used, you may want to precompute some derived data or 
aggregate what you have. Imagine you have a list of GPS paths — each 
path is a sequence of locations. You can use such data to make for 
example a plot but if you want to say something more you have to 
compute it every time you want to display path. Some data are display 
(or generally used) so often that it doesn't make any sense to compute 
them gain, again and again. In case of GPS you may want to aggregate 
data and determine total travel time for each path or derive speed at 
every collected point.


x
y x < y

x y

x

x
y
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Integrating data


Data varies in size, type, and structure, ranging from relational 
databases, key-value stores, document stores, Excel files to CSV files or 
even unstructured text documents. After cleaning the data errors and 
applying transformations, you combine information from different data 
sources.


During integration process you may face a problems of transformation 
nature but sometimes impossible to catch during transformation 
process as they become apparent only at the stage of data merging. 
Notice that I use term problem instead of error. In fact, at this stage all 
data taken separately is 100% correct — it is only when you start to 
connect them that problems arise.


DIFFERENT UNITS AND FORMATS


Units


When integrating two data sets, you have to pay attention to their 
respective units of measurement. An example of this would be when you 
gather data describing dimensions and weight of different goods in 
inches and pounds or in centimetres and kilograms. Another example 
worth to mention is fuel consumption. In Europe it is given in litters per 
100km while in USA it is the number of miles per galon. A simple 
conversion will do the trick in this case.


Inconsistency


An example of this class of problems is putting true in one table and T 
or 1 in another when they represent the same thing: positive answer to 
the question. Another example is that you use millimetres (mm) or 
inches (in) in one table and centimetres (cm) or foots (ft) in another.


Time format nightmare
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As a comment on this issue I will only give a few examples of date and 
time formats [XXX:3]:


Compliant with the ISO 8601:


yyyyMMddZ                    19990322+0100  
yyyyMMdd                     19990322  
yyyy-MM-dd G                 1999-03-22 AD  
yyyy-MM-ddXXX                1999-03-22+01:00  
yyyy-MM-dd'T'HH:mm:ss.SSS'['VV']'  
                          1999-03-22T05:06:07.000[Europe/Paris]  
yyyy-MM-dd'T'HH:mm:ss.SSS    1999-03-22T05:06:07.000  
yyyy-MM-dd'T'HH:mm:ss        1999-03-22T05:06:07  
yyyy-MM-dd'T'HH:mm:ss.SSS'Z' 1999-03-22T05:06:07.000Z  
yyyy-MM-dd'T'HH:mm:ss.SSSXXX 1999-03-22T05:06:07.000+01:00  
yyyy-MM-dd'T'HH:mm:ssXXX     1999-03-22T05:06:07+01:00  
yyyy-DDDXXX                  1999-081+01:00  
YYYY'W'wc                    1999W132  
YYYY-'W'w-c                  1999-W13-2  
yyyy-MM-dd'T'HH:mm:ss.SSSXXX'['VV']'  
                    1999-03-22T05:06:07.000+01:00[Europe/Paris]  
yyyy-MM-dd'T'HH:mm:ssXXX'['VV']'  
                    1999-03-22T05:06:07+01:00[Europe/Paris]

Compliant with the English, United Kingdom:


dd MMMM yyyy                    22 March 1999  
EEEE, d MMMM yyyy Monday,       22 March 1999  
dd-MMM-yyyy                     22-Mar-1999  
dd MMMM yyyy HH:mm:ss z         22 March 1999 05:06:07 CET  
EEEE, d MMMM yyyy HH:mm:ss 'o''clock' z  
                     Monday, 22 March 1999 05:06:07 o'clock CET  
dd-MMM-yyyy HH:mm:ss            22-Mar-1999 05:06:07  
dd-MMM-yy hh.mm.ss.nnnnnnnnn a  22-Mar-99 05.06.07.000000888 AM

Compliant with the English, United States:


M/d/yy                          3/22/99  
MM/dd/yy                        03/11/22  
MM-dd-yy                        03-22-99  
M-d-yy                          3-22-99  
MMM d, yyyy                     Mar 22, 1999  
MMMM d, yyyy                    March 22, 1999  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EEEE, MMMM d, yyyy              Monday, March 22, 1999  
MMM d yyyy                      Mar 22 1999  
MMMM d yyyy                     March 22 1999  
MM-dd-yyyy                      03-22-1999  
M-d-yyyy                        3-22-1999  
yyyy-MM-ddXXX                   1999-03-22+01:00  
dd/MM/yyyy                      22/03/1999  
d/M/yyyy                        22/3/1999  
MM/dd/yyyy                      03/22/1999  
M/d/yyyy                        3/22/1999  
yyyy/M/d                        1999/3/22  
M/d/yy h:mm a                   3/22/99 5:06 AM  
MM/dd/yy h:mm a                 03/22/99 5:06 AM  
MM-dd-yy h:mm a                 03-22-99 5:06 AM  
M-d-yy h:mm a                   3-22-99 5:06 AM  
MMM d, yyyy h:mm:ss a           Mar 22, 1999 5:06:07 AM  
EEEE, MMMM d, yyyy h:mm:ss a z  
                          Monday, March 22, 1999 5:06:07 AM CET  
EEE MMM dd HH:mm:ss z yyyy      Mon Mar 22 05:06:07 CET 1999  
EEE, d MMM yyyy HH:mm:ss Z      Mon, 22 Mar 1999 05:06:07 +0100  
d MMM yyyy HH:mm:ss Z           22 Mar 1999 05:06:07 +0100  
M/d/yy                          3/22/99  
 
MM-dd-yyyy h:mm:ss a            03-22-1999 5:06:07 AM  
M-d-yyyy h:mm:ss a              3-22-1999 5:06:07 AM  
yyyy-MM-dd h:mm:ss a            1999-03-22 5:06:07 AM  
yyyy-M-d h:mm:ss a              1999-3-22 5:06:07 AM  
yyyy-MM-dd HH:mm:ss.S           1999-03-22 05:06:07.0  
dd/MM/yyyy h:mm:ss a            22/03/1999 5:06:07 AM  
d/M/yyyy h:mm:ss a              22/3/1999 5:06:07 AM  
MM/dd/yyyy h:mm:ss a            03/22/1999 5:06:07 AM  
M/d/yyyy h:mm:ss a              3/22/1999 5:06:07 AM  
MM/dd/yy h:mm:ss a              03/22/99 5:06:07 AM  
MM/dd/yy H:mm:ss                03/22/99 5:06:07  
M/d/yy H:mm:ss                  3/22/99 5:06:07  
dd/MM/yyyy h:mm a               22/03/1999 5:06 AM  
d/M/yyyy h:mm a                 22/3/1999 5:06 AM  
MM/dd/yyyy h:mm a               03/22/1999 5:06 AM  
M/d/yyyy h:mm a                 3/22/1999 5:06 AM  
MM-dd-yy h:mm:ss a              03-22-99 5:06:07 AM  
M-d-yy h:mm:ss a                3-22-99 5:06:07 AM  
MM-dd-yyyy h:mm a               03-22-1999 5:06 AM  
M-d-yyyy h:mm a                 3-22-1999 5:06 AM  
yyyy-MM-dd h:mm a               1999-03-22 5:06 AM  
yyyy-M-d h:mm a                 1999-3-22 5:06 AM  
MMM.dd.yyyy                     Mar.22.1999  
d/MMM/yyyy H:mm:ss Z            22/Mar/1999 5:06:07 +0100  
dd/MMM/yy h:mm a                22/Mar/99 5:06 AM
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Compliant with the Lithuanian:


yy.M.d                          99.3.22  
yy.M.d HH.mm                    99.3.22 05.06  
yyyy-MM-dd HH.mm.ss             1999-03-22 05.06.07

GPS Format


After what you have seen in connection with the date and time formats, 
the ways of saving GPS data may seem to you simplistic and limited to a 
just few forms. Traditionally, there are a bunch of format based on 
latitude and longitude:


Latitude: Longitude  
41.40338 2.17403  
41°24'12.2"N 2°10'26.5"E  
41 24.2028 2 10.4418  
N43°38'19.39" W116°14'28.86"  
43 38 19.39 -116 14 28.86  
43.63871944444445 -116.2413513485235  
N 1.286785 E 103.854503

Although specifying location as latitude and longitude is a common 
practice, it is neither very convenient nor easy to memorise and 
interpret. For this reason few other, simpler to use, formats exist. For 
example the Military Grid Reference System (MGRS) allows you to save 
location as a one string; the longer the string is the more accurately it 
describes position:


4Q                   GZD (grid zone designator )only  
4QFJ                 precision level 100 km  
4QFJ 1 6             precision level 10 km  
4QFJ 12 67           precision level 1 km  
4QFJ 123 678         precision level 100 m  
4QFJ 1234 6789       precision level 10 m  
4QFJ 12345 67890     precision level 1 m

There are other systems like the Open Location Code (OLC, location 
codes created by the OLC system are referred to as plus codes), 
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Universal Transverse Mercator (UTM) or W3W (What 3 Words) just to 
mention the most common. For example, the place where I live can be 
coded as [XXX:3,4]:


Decimal degree            N 51.828368 E 19.433184  
Degrees Minutes           N 51° 49.702080 E 19° 25.991040  
Degrees Minutes Seconds   N 51° 49' 42.1248 E 19° 25' 59.4624  
MGRS                      34UCC 92029.524 43109.822  
UTM                       34U 392029.524 5743109.822  
Plus Code                 9F3XRCHM+87  
W3W (What 3 Words)        badly.majority.clash

TIMELINE YOUR DATA


Imagine you have multiple time series data. Maybe some of them have 
constant delta_time (difference in time between two subsequent time 
data), but it is almost impossible that two or more time series have their 
timestamp synchronised. Consider the following data:


time    series1  series2  
 0      100  
 3               37  
 4      110     
 6               41  
 8       90  
 9               38  
12      100      39  
15               42  
16      120  
18               40  
20      115  
21               41

Even if you think you have a lot of data you may find that there are only 
few moments when all series meet. In all other cases one of values is 
correct, while all other can only be interpolated. Another problem is 
variable delta_time — in the above example you obtain:


delta_time: 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1
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DIFFERENT LEVELS OF DISCRETIZATION (AGGREGATION)


Imagine you combine data coming from different restaurants (e.g. 
incomes, number of clients, the need for food ingredients) in some of 
them aggregated per week, in other separately per work week and per 
weekend and in another cases per each day. Sometimes you can unify 
them to have the same level of aggregation — for example, if you have a 
sum of incomes per each day you can add them to get sum of incomes 
per week. Be aware that this is not always possible — for example if you 
have an average of something. Also it would be impossible to "split" sum 
of incomes per week into sum of incomes per each day.


DIFFERENT WAYS OF COMBINING DATA


Very often data integration entails physical data copy, move or 
reorganization.


Appending data 
Limiting the considerations to the tabular form of data representation, 
appending data is equivalent to adding new record to one table with 
data taken from another table.


Joining data 
Joining tables allows you to combine dispersed data. You may do this 
either logically, with foreign keys (FK) from one table referring to 
primary keys (PK) in another table as you do typically when you save 
your data in relational databases:


Before join                      After join  
CSV files                        Relational database  
 
CSV1         CSV2                Tab1         Tab2  
                                 PK           PK  FK  
a 12 13 14   a 11a 12a 13a       a 12 13 14    1  a 11a 12a 13a  
b 22 23 24   b 11b 12b 13b       b 22 23 24    2  b 11b 12b 13b  
c 32 33 34   a 21a 22a 23a       c 32 33 34    3  a 21a 22a 23a  
             c 11c 12c 13c                     4  c 11c 12c 13c  
             a 31a 32a 33a                     5  a 31a 32a 33a  
             b 21b 22b 23b                     6  b 21b 22b 23b
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Another option is to combine physically data. This may lead to 
redundancy but allows to make faster queries and is typical for storing 
data in NoSQL systems:


Before join                       After join  
                    
CSV1           CSV2               Table  
                                  PK            
a 12 13 14     a 11a 12a 13a       1 a 12 13 14 11a 12a 13a   
b 22 23 24     b 11b 12b 13b       2 a 12 13 14 31a 32a 33a  
c 32 33 34     a 21a 22a 23a       3 a 12 13 14 21a 22a 23a  
               c 11c 12c 13c       4 c 32 33 34 11c 12c 13c  
               a 31a 32a 33a       5 b 22 23 24 11b 12b 13b  
               b 21b 22b 23b       6 b 22 23 24 21b 22b 23b 

Use views 
A view behaves as if you’re working on a table, but this table is nothing 
but a virtual layer that combines the tables for you. With view you can 
simulate data appends and joins without touching your precious data. 
Tempting? Not always. Not in datawarehouses. Not when speed is 
crucial.
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SECTION 3


Logs


TODO Short intro to the topic


At the top of log file you should save the checksum of the file for which 
this report is created. This will prevent you from accidentally using your 
log data to a similar but different file (which is not that hard to do).


Keep the scanning log in the form:


{"checksum": {"md5": "123", "sha1": "456"}}  
{"line": 71, "errors": [{"column": 81, "type": "ERROR_1"}]}  
{"line": 72, "errors": [{"column": 82, "type": "ERROR_2"}]}  
{"line": 73, "errors": [{"column": 83, "type": "ERROR_3"}]}  
{"line": 74, "errors": [{"column": 84, "type": "ERROR_4"}]}

Why so? Why not as valid JSON, e.g .:


{  
  "meta": {"checksum": {"md5": "123", "sha1": "456"}},  
  "log": [  
    {"line": 71, "errors": [{"column": 81, "type": "ERROR_1"}]},  
    {"line": 72, "errors": [{"column": 82, "type": "ERROR_2"}]},  
    {"line": 73, "errors": [{"column": 83, "type": "ERROR_3"}]},  
    {"line": 74, "errors": [{"column": 84, "type": "ERROR_4"}]}  
  ]  
}

This allows you to read data line by line without having to read the 
entire log file and put it into memory. Try to load the simplest, not 
complete JSON:
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{  
  "meta": {"checksum": {"md5": "123", "sha1": "456"}},  
  "log": [  
    {"line": 7, "errors": [{"column": 8, "type": "ERROR_1"}]}

Keep in mind that 99% of the time, no one will manually search and 
view the log file — it cannot be done for large data sets. Thus, such a file 
does not necessarily have to be comfortable for a human to read, as it 
will usually be further processed by the computer anyway. Therefore, 
you can safely use a more compact form, which will save a lot of disk 
space. The following form:


{"c":{"md5":"123","sha1":"456"}}  
{"l":71,"e":[{"c":81,"t":"ERROR_1"}]}  
{"l":72,"e":[{"c":82,"t":"ERROR_2"}]}  
{"l":73,"e":[{"c":83,"t":"ERROR_3"}]}  
{"l":74,"e":[{"c":84,"t":"ERROR_4"}]}

allows you to reduce the size relative to the initial file from 283B to 
184B. It can be even shorter, reducing the file size to 168B (i.e. a size 
reduction of 40%):


{"c":{"md5":"123","sha1":"456"}}  
{"e":[71,{"c":81,"t":"ERROR_1"}]}  
{"e":[72,{"c":82,"t":"ERROR_2"}]}  
{"e":[73,{"c":83,"t":"ERROR_3"}]}  
{"e":[74,{"c":84,"t":"ERROR_4"}]}

Another example — simple JSON with places worth to see:


{  
  "data": [  
    {  
      "country": "Poland",  
      "location": "Łódź",  
      "coordinates": {  
        "lat": "51°46′36″N",  
        "long": "19°27′17″E"  
      }  
    },  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    {  
      "country": "Peru",  
      "location": "Arequipa",  
      "coordinates": {  
        "lat": "16°25′03″S",  
        "long": "71°32′12″W"  
      }  
    },  
    {  
      "country": "Austria",  
      "location": "Kals am Großglockner",  
      "coordinates": {  
        "lat": "47°00′N",  
        "long": "12°38′E"  
      }  
    }  
  ]  
}

526B


To make it clear where line ends I use tag <NL>:


{"data":[<NL>  
{"country":"Poland","location":"Łódź","coordinates":{"lat":"51°4  
6′36″N","long":"19°27′17″E"}},<NL>  
{"country":"Peru","location":"Arequipa","coordinates":{"lat":"1  
6°5′03″S","long":"71°32′12″W"}},<NL>  
{"country":"Austria","location":"Kals am Großglockner","coordin  
ates":{"lat":"47°00′N","long":"12°38′E"}}<NL>  
]}

339B


{"location":["Poland","Łódź",{"gps":["51°46′36″N","19°27′17″E"]}  
]}<NL>  
{"location":["Peru","Arequipa",{"gps":["16°25′03″S","71°32′12″W"  
]}]}<NL>  
{"location":["Austria","Kals am Großglockner",{"gps":["47°00′N",  
"12°38′E"]}]}<NL>

204B, (i.e. a size reduction of 62%) 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CHAPTER 3


Big Data concepts and 
terminology


What you will learn:


• What makes data to be considered as big


• How you can describe data


• What is data polymorphism


• Different data usefulness -- what data may brings to you and how 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SECTION 1


What makes data to be 
considered as big


Definition


In many different sources a term big data is defined as a [BD: 1]:


[...] data sets that are too large or complex to be dealt with by 
traditional data-processing application software.[...]


In big data world data volume is important but it's not the only factor 
you should take into account. Saying the truth, voluminous data is not a 
problem if volume is isolated from other possible elements which 
potentially may influence processing. The problem becomes a challenge 
when more factors coexist at the same time. Reading carefully the rest 
of the definition mentioned above you will find the following sentence:


[...] Big data usually includes data sets with sizes beyond the ability of 
commonly used software tools to capture, curate, manage, and process 
data within a tolerable elapsed time.


This simple sentence changes drastically the way you perceive what big 
data is. Time factor plays crucial role. Now you can infer that size is not 
so important as more important is to complete data processing on time. 
There may be situation that your data is not voluminous but because of 
the way you process it, you will miss your deadline. In such a case your 
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data, even not so big in absolute terms, in practice is to big (to 
complicated) since you can't deliver the result on time


The second definition is my favorite. It is short, descriptive and 
including much wider ideas, I have found in [BD: 2]:


Big Data is a field dedicated to the analysis, processing, and storage of 
large collections of data that frequently originate from 
disparate sources. 


So big data is not only about data itself but, which seems to be more 
important, about everything we need to use large collections of data. 
Specifically, big data addresses distinct requirements, such as (but not 
limited to):


• the combining of multiple unrelated datasets,


• processing of large amounts of unstructured data,


• and harvesting of hidden information in a time-sensitive manner.


For the last few years you can observe something I name Big Data 
Madness. Everyone announce to use big data (together with cloud 
computing, machine learning and blockchain) either they think they 
need them or they must say so to be in the mainstream of contemporary 
state of the art technologies, according to the rule: whether I need this 
or not, if my business competitors have this, then I must have one too. 
Because of this, big data may appear as a new discipline, but it has been 
developing for years. The management and analysis of large datasets 
has been a long-standing problem; recall one of the best known: the US 
census[BD: 3].


In 1880, as new arrivals flooded into the United States and the 
population exploded, the US census turned into an administrative 
nightmare. The work of measuring and recording the fast-growing 
country’s population was maddeningly slow and expensive. Clerks 
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would need eight years to finish compiling the census. So, barely 
finished one thing and you have to start the other. As the data 
processing results were obtained with so long delay, they were 
practically worthless due to the very high dynamics of social changes.


Next time, in 1890, the Census Bureau decided to use The Hollerith’s 
Punched Card Tabulator machine to work on census. It did the job in 
just two years, and saved the government US$5 million. By the way we 
got an extra new value. Not only could the machines count faster, but 
they could also understand information in new ways. Rearranging the 
wires on a tabulating machine allowed users to learn things they never 
knew they could learn, and at speeds no one thought possible. And this 
is something really precious which makes a real difference. A traditional 
analytic approaches, based on statistics, approximate measures of 
something via sampling it. Big data adds to this a possibility to 
processing of entire datasets, making such sampling unnecessary and 
analysis more accurate.


A  traditional analytic approaches, based on statistics, 
approximate measures of something via sampling it. Big data 

adds to this a possibility to processing of entire datasets, making 
such sampling unnecessary and analysis more accurate.


Surprisingly, the first application of big data approach dates back even 
earlier, to the ancient time [BD:4]. In 431 BCE, Sparta declared war on 
Athens.


TODO


Thucydides, in his account of the war, describes how besieged Plataean 
forces loyal to Athens planned to escape by scaling the wall surrounding 
Plataea built by Spartan-led Peloponnesian forces. To do this they 
needed to know how high the wall was so that they could make ladders 
of suitable length. Much of the Peloponnesian wall had been covered 
with rough pebbledash, but a section was found where the bricks were 

6 3



still clearly visible and a large number of soldiers were each given the 
task of counting the layers of these exposed bricks. Working at a 
distance safe from enemy attack inevitably introduced mistakes, but as 
Thucydides explains, given that many counts were taken, the result that 
appeared most often would be correct. This most frequently occurring 
count, which we would now refer to as the mode, was then used to 
calculate the height of the wall, the Plataeans knowing the size of the 
local bricks used, and ladders of the length required to scale the wall 
were constructed. This enabled a force of several hundred men


to escape, and the episode may well be considered the most impressive 
example of historic data collection and analysis. But the collection, 
storage, and analysis of data pre-dates even Thucydides by many 
centuries, as we will see.


Talking about definition, I have to stress that the one quoted above is 
the best for me but not the only one. The whole spectrum of ideas 
focused under the big data name blends mathematics, statistics, 
computer science and subject matter expertise. This mixture has led to 
some confusion as to what comprises the field of big data and the 
response one receives will be dependent upon the perspective of 
whoever is answering the question. What is more, the boundaries of 
what constitutes a big data problem are also changing due to the ever-
shifting and advancing landscape of software and hardware technology. 
This is due to the fact that the definition of big data takes into account 
the impact of the data’s characteristics on the design of the solution 
environment itself. Long time ago, in 90s, I had a PC with 4MiB RAM 
and I could play the most demanding games, while one gigabyte of data 
was a big data problem requiring special purpose computing resources. 
Now, gigabytes of data are commonplace and can be easily transmitted, 
processed and stored even on a mobile phone.


The applications and potential benefits of big data are broad including, 
but not limited to
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• optimization,


• identification,


• predictions,


• fault and fraud detection,


• improved decision-making,


• scientific discoveries.


However, please don't fall into big data madness and remember to 
considered numerous issues when adopting big data analytics 
approaches. These issues need to be understood and well weighed 
against anticipated benefits.


Final though


What makes data to be considered as big? Is this its size? Not exactly. 
Size is the factor you can easily measure. And in most cases, as size 
increases also data processing gets more and more complicated. For me 
big data is any data set based on which I can't provide useful results in 
required time. It may be a matter of size. But as well it may be a matter 
of processing complexity or any other factors.


Let's say that you process data coming from LHC (Large Hadron 
Collider). In this case, it is really a big data in terms of size. It is enough 
to say that the LHC experiments produce about 90 petabytes of data per 
year [BDS:4].


NOTE


LHC data size


6 5



To have a relation to something you know from real life you can find 

how big storage you need to save it. When I was young very often as a 

capacity unit a number of CDs was used. How much CDs do you need 

in this case? Let's do simple math:


• 1 pebibyte is  bytes (1125899906842624 bytes);


• 1 mebibyte is  byes (1048576 bytes);


• 1 CD is 700 MiB;


• 90PiB is approximately 1533916.89 * 700 MiB, which is 

approximately 138052521 CDs;


• CD thickness is 1.2mm;


• CD weight varies from 14 to 33 grams (average 23.5g);


• the tower formed of cd's would be 165.66 kilometres high 

( ) and a mass of 3244.23 tons 

( ).


If this is too much for you, you can change unit and express size in 

DVDs instead of CDs:


• 1 gibibyte is  byes (1073741824 bytes);


• 1 DVD is 4.7GB which is 4.38GiB; approximately 4702989189 bytes;


• 90PiB is approximately 21546083 DVDs;


• DVD thickness is 1.2mm;


250

220

(138052521 ⋅ 1.2)/1000000 ≈ 165.66
(138052521 ⋅ 23.5)/1000000 ≈ 3244.23

230
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• DVD weight varies from 14 to 33 grams (average 23.5g);


• the tower formed of cd's would be 25.86 kilometers high 

( ) and a mass of 506.33 tons 

( ).


For really big sets of data even the number of DVDs become so large 

that it again becomes abstract. This way more voluminous units are 

used – for example well known library, like the American Library of 

Congress.


Unfortunately now you can only estimate its size and it varies from 6TiB 

([...] stores some 32 terabytes (32,768 GB) of data. That’s five times 

more than the world’s largest library – the US Library of Congress) to 

250TiB ([...] keeps 500 terabytes of storage [...] that’s about twice the 

amount needed to hold the entire Library of Congress) [BDS: 1, 2]. If 

you are interested in where these large discrepancies come from, read 

[BDS: 2]. Assume that it takes 200TiB which is 0.2PiB. Than LHC every 

year produces  times more data than is stored in the 

American Library of Congress.


Obviously, such a large amount of data requires a sufficiently long time 
to process them. But it doesn't matter if you get your results in 3 months 
or 3 weeks. No one will die because of this, the results will be just as 
useful in 3 months as in 2. Only scientists will be more and more 
impatient...


For comparison, stock market data is orders of magnitude smaller than 
the LHC data but results are needed right now. You have to collect 
them, filter, save, process and provide useful output within seconds and 
it must be so as long as market is open. In this case also size of data is a 
problem — less data you have, highly probable is that you complete the 

(21546083 ⋅ 1.2)/1000000 ≈ 25.86
(21546083 ⋅ 23.5)/1000000 ≈ 506.33

90/0.2 = 450
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whole process on time. But considering only the absolute size of the 
data, it is easy to see that these problems are incomparable.
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SECTION 2


How you can describe 
values you have


In this section I present some terminology and concepts related to data. 
I will show how you can characterize data you have.


Property types


I intentionally use in this subsection a term property because it let me 
define a little bit later what data is. Property describes somehow given 
object or thing. It may be its size (width, height etc.), color, taste, the 
group to which you include it (high people, speed cars, nice wether etc.), 
subjective opinions — anything you can say about it. There are two main 
types of properties: qualitative, quantitative.


QUALITATIVE AND QUANTITATIVE PROPERTIES


Qualitative properties are properties which can be observed but cannot 
be computed nor measured with a numerical result. Qualitative data is 
about the emotions or perceptions of people, what they feel. You use 
this type of properties to describe a given topic in more abstract 
way including even impressions, opinions, views and motivations. This 
brings depth of understanding to a topic but also makes it harder to 
analyze. You consider this type of properties as being unstructured. 
When the data type is qualitative the analysis is non-statistical. 
Qualitative properties asks (or answers) the question: Why?
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Advantages of qualitative properties 
It helps in-depth understanding: you can ask about things which are not 
visible at first sight or even at all:


- What do you think about...?


- Does it smell nice?


- Do you recommend it?


- Is it comfortable to wear it?


- What you think about its height?


It helps you to understand what people think, how they perceive 
something. Since the questions asked to collect qualitative data are 
open-ended questions, respondents are free to express what they feel.


Disadvantages of qualitative properties 
Collecting qualitative data is much more time consuming. What you 
collect strongly depends on you and your respondents involvement. You 
have to ask right questions, people have to provide honest answers and 
you have to note them correctly. Because nature of answers is very 
subjective they are not easy to generalize.


Quantitative properties are focuses on numbers and mathematical 
calculations and can be calculated and computed. We consider this type 
of properties as being structured and statistical. Quantitative properties 
asks (or answers) How much? or How many?


Advantages of quantitative properties 
Due to the numerical nature of quantitative data, the personal bias is 
reduced to a great extent. As the results obtained are objective in nature, 
they are extremely accurate. Quantitative data can be statistically 
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analyzed — if it is done correctly it minimizes personal biases and 
attitude to something.


Disadvantages of quantitative properties 
You get very precise but limited answers. If for example you ask about 
height in centimeters you will get nothing else than object's height in 
centimeters. This is much different than qualitative question: What you 
think about its height? What you collect strongly depends on you.


DISCRETE AND CONTINUOUS PROPERTIES


Your properties can be understood as the quantitative information 
about a given topic. If the property characteristic is qualitative it should 
be transformed into quantitative one, by providing numerical data of 
that characteristic (you have to map qualitative information into 
numbers), for the purpose of statistical analysis.


The quantitative characteristic can be considered as being discrete, or 
continuous.


Factor Qualitative Quantitative

Meaning The data in which the 
classification of objects is 
based on attributes and 
properties

The data which can be 
measured and expressed 
numerically

Type of data Unstructured Structured

Analysis Non-Statistica Statistical

Used to Get initial understanding. Recommends final course 
of action.

Methodology Exploratory Conclusive

Question Why? How many or How much?
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Discrete is a type of data that can assume only fixed number of distinct 
values and sometimes lacks an inherent order. Also known as a 
categorical, because it has separate, invisible categories.


Continuous is a type of statistical information that can assume all the 
possible values within the given range. If a property can take an infinite 
and uncountable set of values, then the property is referred as a 
continuous.


Both definitions work in real, analog, word. In digital word everything is 
discrete; every analog data is changed into discrete data. So, how can 
you tell the difference between these two properties? To answer this 
question you need a concept of isolated point. 


In mathematics, a point  is called an isolated point of a subset  of 
space  if  is an element of  and there exists a neighborhood of  
which does not contain any other points of . If the space  is a 
Euclidean space, then  is an isolated point of  if for any (small)  there 
exists an open ball of radius  around  which contains no other points 
of . For example, if  is a real line and subset is defined as:





then each of the points  is an isolated point, but  is not an isolated 
point because there are other points in  as close to  as desired. A set 
that is made up only of isolated points is called a discrete set.


In computer science the space  is a set of all the numbers you can 
represent on a computer. In consequence radius  can't be infinitely 
small; it must be for example at least greater than machine epsilon.


NOTE


Machine epsilon


x S
X x S x

S X
x S ε

ε x
S X

S = {0} ∪ {1,1/2,1/3,…}

1/k 0
S 0

X
ε
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Machine epsilon is the maximum relative error while rounding a floating 

point number [CS:1, 2]. Simply speaking:


• it is the largest floating point number  such that when added to 1 

gives 1: ;


• it is the smallest floating point number  which when added to 1 

gives something different than 1: 


If for all values of some property you have it may happen that you may 
receive other values which are "close" (lie inside of a circle, or more 
general: ball, with radius ), then this property is continuous. Otherwise 
it is discrete.


Even if it sound good, it is not so easy to decide in real life cases. For 
example, the space of car colors of some brand is discrete. You may 
assign numbers to every color: 0 — black, 1 — red, 2 — green, etc. But 
you can try to be a wiseacre and assign such a numbers: 0 — , 1 — 

, 3 — , etc Than according to above definition this should 
be classified as continuous space. If you consider RGB color space is this 
space discrete or continuous?


I think, that every time you decide: discrete or continuous, you must use 
a common sens. If you blindly apply definitions and formulas you will 
run into problems. The reference for you should be an analog, real 
word. If in reality something is continuous, the digitally it makes sens to 
think about it as continuous even if it is represented with natural 
numbers like RGB colors.


ε
1 + ε = 1

ε
1 + ε > 1

ε

1 + ε
1 + 2ε 1 + 3ε
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Accuracy or precise?


Sometimes you can heard about data precision or that some data is 
accurate. Very often both terms are treated as synonyms but in fact they 
have different meaning. So what is the difference between precise and 
accurate?


Accuracy refers to how close a measurement is to the true or accepted 
value.


Precision refers to how close measurements of the same item are to 
each other.


Precision is independent of accuracy. That means it is possible to be 
very precise but not very accurate, and it is also possible to be accurate 
without being precise.


To illustrate the fundamental difference between both terms, the 
analogy to a shooting target is instructive.


Factor Discrete Continuous

Meaning Refers to the variable that 
in real word assumes a 
finite number of isolated 
values

Refers to the variable that 
in real word assumes 
infinite and uncountable 
number of different values

Represented by Isolated points Any point has another 
points arbitrarily close to 
it

Values are obtained by Counting Measuring

Classification Non-overlapping Overlapping
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• Considering the case of a rifle with calibrated sighting scope in the 
hands of a professional marksman with a steady hand we will get 
accuracy and precision.


• Considering the result for a professional marksman using a rifle 
whose sighting scope is not calibrated we will get no accuracy and 
precision.


• Considering the result for an amateur (with a shaky hand) using a 
calibrated rifle we will get accuracy and no precision.


• Considering the result for an amateur shooting an un-calibrated rifle 
we will get no accuracy and no precision.


Of course, the best quality scientific observations are both accurate and 
precise.
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SECTION 3


Data


In this section I want to show different faces of data. I want to show you 
that data depending on some other "factors" can be treated or 
interpreted differently. By analogy to computer programming languages 
or biology I call it data polymorphism. 


NOTE


Polymorphism


In biology: the occurrence of two or more clearly different forms or 

morphs, in the population of a species. 

 

Word morph used as a verb means change smoothly from one form to 

to another by small gradual steps; for example image to another image 

by small gradual steps using computer animation techniques. 

 

In computer science (programming languages): the use of a single 

symbol to represent multiple different types.


Data and datasets
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Datum is a single value of qualitative or quantitative variable 
(property). A set of such values is data. Dataset is a collection or group 
of related data. Each group or dataset member shares the same set of 
attributes or properties as others in the same dataset.


NOTE


Data


The Latin word data is the plural of datum, (en. (thing) given) neuter 

past participle of dare (en. to give). In consequence, datum should be 

used in the singular and data for plural, though, in non-specialist, 

everyday writing, data is most commonly used in the singular, as a 

mass noun (like "information", "sand" or "rain"). Saying the truth, I 

observe this tendency to be more and more common. The first English 

use of the word data is from the 1640s. Using the word data to mean 

transmittable and storable computer information was first done in 

1946. The expression data processing was first used in 1954 [BD:1].


So datum is any single value like: 12, red, high, fast, 19°27′17″E, 
2021-04-04 09:36, etc. Single means: of the form you treat as 
atomic, even if it is compound like timestamp or GPS coordinates.


Data is a set of different values like: 
{20210328000007, 281c0489060000bc, 7.687500}  
or 
{Poland, Łódź, 51°46′36″N, 19°27′17″E}.


You can create a dataset of temperatur measurements (in CSV form):


timestamp, sensor_id, temperature_celsius  
20210328000007, 281c0489060000bc, 7.687500  
20210328073157, 281c0489060000bc, 7.062500  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20210328141137, 281c0489060000bc, 13.312500  
20210328184357, 281c0489060000bc, 11.312500


or places worth to see (as JSON):


{  
  "data": [  
    {  
      "country": "Poland",  
      "location": "Łódź",  
      "coordinates": {  
        "lat": "51°46′36″N",  
        "long": "19°27′17″E"  
      }  
    },  
    {  
      "country": "Peru",  
      "location": "Arequipa",  
      "coordinates": {  
        "lat": "16°25′03″S",  
        "long": "71°32′12″W"  
      }  
    },  
    {  
      "country": "Austria",  
      "location": "Kals am Großglockner",  
      "coordinates": {  
        "lat": "47°00′N",  
        "long": "12°38′E"  
      }  
    }  
  ]  
}
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Difference between data and information


In common understanding and use data and information are synonyms 
and very often are used interchangeably. Sometimes I also do it when I 
have no choice (e.g. to avoid repetition in the text), but I do my best to 
avoid it.


Data is a dumb set of values. Nothing more. When the data is processed 
and transformed in such a way that it becomes useful to the users, it is 
known as information.


Raw facts you collect about an events, ideas, entities or anything else, is 
called data. In most basic case, data are simple text and numbers. You 
turn raw facts into information when we process and interpret it. So 
when data starts to "speak", when something valueless is turned into 
priceless, we have an information. The same "thing" may be considered 
as data or information depending on the context it is used.


Factor Data Information

Meaning Data means raw facts 
gathered about someone 
or something, which is 
bare and random

Facts, concerns a 
particular event or 
subject, which are refined 
by processing

Physical form It is just text and numbers It is somehow refined

Storage form Unorganized Organized

Usefulnes Who knows? May or may 
not be

Always
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Data polymorphism -- DIKW pyramid


The DIKW (data, information, knowledge, wisdom) pyramid shows that 
data, produced by events, can be enriched with context to create 
information -- this is what you know. If you go further, information can 
be supplied with meaning to create knowledge and knowledge can be 
integrated to form wisdom, wich is at the top.


Consider the following example. Number 20 is only a meaningless 
value. You can't say anything about it, you don't know what you can do 
with it. And it is exactly what data is: simply speaking, only values. If I 
tell you that it is a value of temperature expressed in degrees centigrade 
you will know for what it can be used or what you can think about it — 
you know its usage context. Now the same value is turned into 
information, as you know more than pure number — this information 
(as now you know how to interpret it) might be useful, provided that 
you know more. "More" means that you need meaning — you need to 
know what this temperature is about. It may be a temperature in my 
fridge, garage or jet engine. So now, the same value, but supplied with 
context and meaning, is turned into knowledge. Knowledge about 
object, process or anything else it is related to. If it is a temperature in 
my fridge it means that fridge is broken. If it is a temperature in my 
garage, it is ok. On the other hand, if this temperature reaches value 60, 
200 or more, this may mean that there is a fire in the garage. Broken 
fridge or fire in garage is not "encoded" in this value as it is simply a 
number. So only thanks to wisdom, thanks to various knowledge 
integration, you may infer this. Only thanks to your experience, you 
know that 200 is really very hot and is not usual for garages. If you 
registered it, this means that something extremely extraordinary must 
have happened, for example fire. This knowledge is not coming from 
pure number but is an effect of combining broader knowledge you have 
about temperatures, fires, etc. Saying the truth, wisdom is something 
much more. I would say, that wisdom is a wise, proper and adequate use 
of knowledge. There is a nice saying (by Miles Kington):
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Knowledge is knowing a tomato is a fruit. 
Wisdom is not putting it in a fruit salad.


The same value may have different "faces", may represent different type, 
shape or aspect (chose what is more adequate for you) of data. In other 
words, you can give your data a value depending on the way you use it. 
This is how you change the value of your data from hindsight through 
insight to foresight.


• Hindsight: understanding of a situation or event only after it has 
happened or developed.


• Insight: the capacity to gain an accurate and deep intuitive 
understanding of a person or thing.


• Foresight: the ability to predict or the action of predicting what will 
happen or be needed in the future.


Example:


Hindsight: Understand why the plane crashed.


Insight: Understand what is going on with the plane at the moment and 
whether it will result in crash soon.


Foresight: Predict that the plane may crash in the future if the engines 
will be not maintained.


Data analysis and analytics


Data analysis is the process of examining data to find facts, 
relationships, patterns, insights and/or trends. The overall goal of data 
analysis is to:


• discover useful information,
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• make conclusions,


• support better decision-making.


Data analytics is a term that encompasses data analysis. Data analytics 
is a discipline that includes the management of the complete data 
lifecycle, which encompasses collecting, cleansing, inspecting, 
organizing, storing, transforming, analyzing and modeling data. The 
term includes the development of analysis methods, scientific 
techniques and automated tools. Data analytics enable data-driven 
decision making with scientific backing so that decisions can be based 
on factual data/information and not simply on past experience or 
intuition alone. 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SECTION 4


Most wanted properties of 
data


You can collect, store and process data according to different rules and 
requirements. Whatever and however you work with data, it is true that:


• you don't want to lose your date;


• you want it to be true now and in the future;


• you want to be able to get back with all changes you made on it.


More technically, you want it to be raw, immutable and eternally true.


Raw form


Everything I do in my professional life I try to be faithful to my own 
rule: never ever destroy original data. If I prepare an image for one 
of my tutorials I always keep original screenshot even if know I need 
only a small part of it. When I need to prepare a set of artificial data to 
be used during my classes I'm saving a source code of the program used 
to generate it. In most cases operations I do on my data are not 
reversible. For example when you paint a line on a bitmap and save it 
you can't revert this action after reloading the image. That is why I 
always keep original data.
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Storing data in the rawest form possible is hugely valuable because 
maximizes your ability to obtain new insights, whereas any processing 
like aggregating, overwriting, or deleting limits what your data can tell 
you.


When you think about rawest, please keep in mind that:


Note 1:


Unstructured data is rawer than normalized data. Recal from physic or 
mathematic classes vector normalization.


Let  and  are vectors of the form:





Now you can normalize length to not exceed 1. First you calculate length 
of each vector:





Next you can find maximum length:





Having  you can finally normalize your vectors:





After vector normalization their relative magnitudes and directions are 
preserved but this way you loose some information (original absolute 
magnitudes) and you can't restore it. Having only information that





v w

v = [1,0], w = [2,0]

|v | = 1, |w | = 2

l = max( |v | , |w | )

l

vn =
v
l

= [0.5,0], wn =
w
l

= [1,0]

vn = [0.5,0], wn = [1,0]
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it is impossible to guess their initial values because there are infinitely 
many candidate vectors like:





or





Having only  and  there is no method to get back  and .


Note 2:


More informations doesn't necessarily mean rawer data. Sometimes 
additional information serve only as the container for the contents and 
shouldn’t be part of your raw data.


TODO: example needed


Immutable form


Data immutability means that you don’t update or delete data – you 
only add more. By using an immutable schema for Big Data systems, 
you make the system more fault tolerant. Making your system, and data 
particularly, resistant to any faults is an essential property. Especially 
faults generated by humans can be destructive. People make mistakes, 
and you must limit the impact of such mistakes and have mechanisms 
for recovering from them.


People make mistakes, and we must limit the impact of such 
mistakes and have mechanisms for recovering from them.


vn = [2.5,0], wn = [5,0]

vn = [0.05,0], wn = [0.1,0]

vn wn v w
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With a mutable data model, a mistake can cause data to be lost, because 
values are actually overridden in the database. With an immutable data 
model, no data can be lost. If bad data is written, earlier data 
(unaffected by any mistakes) still exist. Fixing the data system is just a 
matter of deleting the bad data records (or rather marking as deleted 
without physical removal) and recomputing what should be fixed. Such 
an immutable dataset is sometimes called a master dataset.


One of the trade-offs of the immutable approach is that it uses more 
storage than a mutable schema. Rather than storing a current snapshot 
of the world, as done by the mutable schema, you create a separate 
record every time a data/information evolves. You track each data field 
so the entire history of data changes is stored rather than just the 
current view of the world. In such a case, when multiple instances of 
every data field exists you have to tie them to a moment in time when 
the information is known to be true or somehow enumerate them to be 
able to determine the order of the records.


EXAMPLE 1.1 – THE DATA IS IRRETRIEVABLY CHANGED DURING THE 
UPDATE


Initial state of the table:


State of the table after series of updates:


table

id object_id data_1 data_2

1 1 1 2

2 2 3 4

table

id object_id data_1 data_2

4 1 2 2
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As you can se it is impossible to determine how many times object 1 was 
changed and in consequence it is impossible to recovery bad data if 
there are any.


EXAMPLE 1.2 – TRACK EVERY DATA CHANGE


You store the whole history of data changes. You save new record not by 
update but by addition along with timestamp (or counter) and 
is_active marker which informs which record of given object is the 
newest one.


Initial state of the table:


State of the table after series of updates:


6 3 3 2

7 2 5 7

table

id object_id data_1 data_2

1 1 1 2

2 2 3 4

table

id object_id data_1 data_2 counter is_acive

1 1 1 2 1 false

2 2 3 4 1 false

3 1 1 3 2 false

4 1 2 2 3 true

5 2 3 3 2 false

6 3 3 2 1 true
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If you think that this is a waste of storage space remember you are in 
Big Data word which is called so for a reason. You have big data not just 
for fun but to give you new perspectives with various data processing 
options and paths. Do you need a simple and strongly human-fault 
tolerant master dataset? No problem, take advantage of the ability to 
store large amounts of data using Big Data technologies to get the 
benefits of immutability.


Eternally true form


TODO


Thanks to immutable form, timestamp or counters accompanying your 
data, each piece of data coming from this set is true in perpetuity.


7 2 5 7 3 true
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SECTION 5


Different data usefulness


There are four general categories of analytics that are distinguished by 
the results they produce:


• descriptive,


• diagnostic,


• predictive,


• prescriptive.


The order of categories matter: value and complexity increase from 
descriptive to prescriptive analytics. Descriptive analytics can be 
concerned as pure data, while prescriptive as optimization. The 
different analytics types leverage different techniques and analysis 
algorithms. This implies that there may be varying data, storage and 
processing requirements to facilitate the delivery of multiple types of 
analytic results.


DESCRIPTIVE ANALYTICS


Descriptive analytics are carried out to answer questions about events 
that have already occurred: What has happened?


This type of analytics use data aggregation and data mining to 
provide insight into the past.
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Descriptive analysis or statistics does exactly what the name implies: 
they describe, or summarize raw data and make it something that is 
interpretable by humans. It is analytic that describes the past. The past 
refers to any point of time that an event has occurred, whether it is one 
minute ago, or one year ago. Descriptive analytics are useful because 
they allow you to learn from past behaviors, and understand how 
they might influence future outcomes. For example, descriptive 
analytics examines historical electricity usage data to help plan power 
needs and allow electric companies to set optimal prices.


Most of analytics results are descriptive in nature. Descriptive analytics 
provide the least worth and require a relatively basic skillset. 
Descriptive analytics are often carried out via ad-hoc reporting or 
dashboards.


DIAGNOSTIC ANALYTICS


Diagnostic analytics also concern past but answers question: Why did 
it happen?


Diagnostic analytics aim to determine the cause of a fact that 
occurred in the past using questions that focus on the reasons behind 
the events. The goal of this type of analytics is to determine what 
information is related to something in order to be able to 
answer questions that seek to determine why it has occurred.


Diagnostic analytics provide more value than descriptive analytics but 
also require a more advanced skillset. It usually requires collecting data 
from multiple sources and storing it in a structure that allows easily 
perform various analysis. Diagnostic analytics results are often viewed 
via visualization tools that enable users to identify trends and patterns.
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PREDICTIVE ANALYTICS


Predictive analytics, as descriptive and diagnostic, also concern past 
but looks into the future and answers question: What will happen?


It use statistical models and various "forecasts" techniques to analyze 
historical and current facts in case to understand the possible 
future and predict it with the highest possible probability.


With this type of analytics you generate future predictions based 
upon past events. To do this, some models of the past are created. It 
is very important to understand that these models are very tightly 
connected with the conditions under which the past events occurred. If 
these underlying conditions change, your prediction will fail and then 
the models that make predictions need to be updated. The problem is 
that you cannot change your models ahead  of time — you can do this 
only after something happens. Even if you know that conditions are 
changing you have to wait and reconcile with thoughts that your 
prediction will be incorrect.


This kind of analytics involves the use of large datasets and various data 
analysis techniques. It provides greater value than both descriptive and 
diagnostic analytics for the price of a more advanced skillset. The tools 
used vary and it is very common to use few of them. Various tools and 
languages, broad theoretical knowledge and unconventional approaches 
and open mind may be needed to do something in the field of predictive 
analytics.


PRESCRIPTIVE ANALYTICS


There will be nothing strange if we say that also this type of analytics 
concern past to think about future but in this case answers question: 
What should I do?


Prescriptive analytics attempt to prescribing a number of different 
possible action "sequences" that should be taken to reach a goal. What is 
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important, these analytics attempt to evaluate the effect of 
future decisions and actions before they are actually made. In 
this sens, prescriptive analytics is much more than predictive analytics, 
because it not only predicts what will happen, but also explains 
why it will happen. So the focus is not only on which prescribed 
option is best to follow, but why.


It use optimization and simulation algorithms to tell us what I should 
do to get assumed result. This is the most demanding analytics 
require much more than predictive analytics. To be successful in this 
area you have to be very often an expert in the field of interes. Having 
knowledge is not enough; you have to "feel" it. For example to answer 
the question When is the best time to trade a particular stock? you have 
to deeply understand stock market and all its nuances; the best option is 
we are a trader. This type of job can not be outsourced to "general 
purposes" company or staff.
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SECTION 6


Big data characteristics


Trying characterize big data, you should abstract from any technical 
specifications, measures and absolute values. What was, in technical 
terms, big data years ago now is a common and every day task. Over the 
years, incredible progress has been made in the field of hardware 
[COM:1]:


By 1961, a few universities around the world had bought IBM 7090 
mainframes [designed for large-scale scientific and technological 
applications]. The 7090 was the first line of all-transistor computers, 
and it cost US $20 million in today's money [a typical system sold for 
$2.9 million which is equivalent to $20 million in 2020], or about 
6,000 times as much as a top-of-the-line laptop today. Its early buyers 
typically deployed the computers as a shared resource for an entire 
campus. Very few users were fortunate enough to get as much as an 
hour of computer time per week.


The 7090 had a clock cycle of 2.18 microseconds, so the operating 
frequency was just under 500 kilohertz. But in those days, instructions 
were not pipelined, so most took more than one cycle to execute. Some 
integer arithmetic took up to 14 cycles, and a floating-point operation 
could hog up to 15. So the 7090 is generally estimated to have executed 
about 100,000 instructions per second. Most modern computer cores 
can operate at a sustained rate of 3 billion instructions per second, 
with much faster peak speeds. That is 30,000 times as fast, so a 
modern chip with four or eight cores is easily 100,000 times as fast.
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But, really, this comparison is unfair to today’s computers. Your laptop 
probably has 16 gigabytes of main memory. The 7090 maxed out at 
144 kilobytes. To run the same program would require an awful lot of 
shuffling of data into and out of the 7090—and it would have to be 
done using magnetic tapes. The best tape drives in those days had 
maximum data-transfer rates of 60 KB per second. Although 12 tape 
units could be attached to a single 7090 computer, that rate needed to 
be shared among them. But such sharing would require that a group of 
human operators swap tapes on the drives; to read (or write) 16 GB of 
data this way would take three days. So data transfer, too, was slower 
by a factor of about 100,000 compared with today’s rate.


As you can see, your laptop is way more powerful than you might 
realize. A week of computing time on a modern laptop would take 
longer than the age of the universe on the 7090.


A  week of computing time on a modern laptop would take 
longer than the age of the universe on the IBM 7090 

mainframe designed in 1959 for large-scale scientific and 
technological applications.


In consequence you should rather think about concepts and ideas 
emerging when you work with data to which you cannot apply the 
current approach and tools due to their high ineffectiveness.


For a dataset to be considered big data, it must possess more than one 
characteristics commonly referred to as the Five Vs:


• volume,


• velocity,


• variety,


• veracity,
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• value.


These five big data characteristics are used to help differentiate data 
categorized as big from other forms of data. Three of them were initially 
identified by Doug Laney in early 2001 when he published an article 
describing the impact of the volume, velocity and variety of e-
commerce data on enterprise data warehouses. To this list, veracity and 
value has been added later to emphasize that big data is not only about 
data but also bout data usefulness.


VOLUME


Almost any aspect of our live is or can be a source of data and they can 
be generated by human, machines as well as environment. The most 
common are (H is used to denote human, M — machines, E — 
environment):


• (H) social media, such as Facebook and Twitter,


• (H) scientific and research experiments, such as physical simulation,


• (H) online transactions, such as point-of-sale and banking,


• (M) sensors, such as GPS sensors, RFIDs, smart meters and 
telematics,


• (M) any woking device we monitor for our safety, such as planes or 
cars,


• (E) weather conditions, cosmic radiation.


Today, we collect all data we can get regardless whether we really need 
them or not. Amount of data is really enormous.


The size seems to be the most obvious factor — hence the name big 
data. We see all the problems through the prism of the size of the data, 
and undoubtedly this is often the case. But big data is not only about 
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data itself and size is not so important as more important is to consider 
also other factors like complete data processing on time. There may be 
situation that your data is not voluminous but because of the way you 
process it, you will miss your deadline. It is impossible to give exact size 
of data above which classify them as big. It doesn't make sense. You can 
imagine situation when petabytes od data, for example from Large 
Hadron Collider, is waiting for processing. Yes, it's a lot of data but no 
one will die if the results are in a month instead of today. In this context, 
it's not big data but rather time consuming task. Time consuming tasks 
are common but nobody call them big. You download Linux DVD iso 
image — it takes time. You run massive system update for your os — it 
takes time.


Volume is important as far as it occurs in combination with other 
factors. Because of this I think that big data term is a little bit 
misleading. Personally I use the term problematic data which does not 
emphasize only one of many possible factors.


VELOCITY


Velocity describes influence of new incoming data on processing 
pipeline. Even if you have a lot of data but you don't expect any new, 
things are time consuming but quite simple. Conversely, if chunks of 
data are tiny but arrive at very high frequency you may have serious 
problems keeping up with their processing because it may result in 
accumulation of data that is becoming unprocessable due to the 
constant flow of new data. There is no time to postpone some 
processing.


This way volume combined with velocity may get you in troubles 
turning data into problematic data.


VARIETY


Data variety refers to the multiple formats and types of data that need to 
be supported by big data solutions. It also concerns data format 
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variability — the data coming even from the same source may arrive in 
different formats. Data variety brings challenges in terms of data 
transformation, integration and storage. All of this requires additional 
time reducing this way volume of data possible to processing and 
limiting the frequency with which the data that can be received arrives.


VERACITY


Veracity refers to the quality or fidelity of data. If you want to do 
something valuable with data it need to be assessed for quality. Because 
any data can be a part of the signal or noise, it lead to data processing 
activities to resolve invalid data and remove noise. Noise is data that 
cannot be converted into information and thus has no value, whereas 
signals have value and lead to meaningful information. Data with a high 
signal-to-noise ratio has more veracity than data with a lower ratio. The 
signal-to-noise ratio of data is dependent upon the source of the data 
and its type. For example data that is acquired via online customer 
registrations, usually contains less noise than data acquired via blog 
postings.


Note that this requirement is not of a technical nature, but rather we 
can talk about a functional requirement, about usability. To name a set 
of data a big data set is not enough anymore for it to be voluminous with 
data incoming in various formats and high frequency. If it's everything, 
then your data is not big data because it doesn't offer you a special 
features. If you cannot rely on your data then you have garbage, no data. 
So what if there is a lot of data, since they are not suitable for anything 
anyway.


VALUE


Another one nontechnical requirement. Value is defined as the 
usefulness of data. In most cases it is considered in relation to problem 
— in many cases to the data processing time. A 20 minute delayed stock 
quote has no value for making a trade compared while you can wait 
several months to get results of a complex physical simulation. 
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Simplifying the issue, you can say that, value and time are inversely 
related. The longer it takes for data to be turned into meaningful 
information, the less value it has for a business. Outdated information, 
even if of very good quality and high probability, is totally useless.


The goal of big data usage is to conduct analysis of the data in such a 
manner that high-quality results are delivered in a timely manner, 
providing optimal value to the company.


More "V"s?


In this chapter I have described five Vs. It's worth to note, that initially 
(2001) there was only three Vs: volume, velocity, variety extended later 
by veracity and next by value. Along with how the area and method of 
using big data changes, the characteristics of what we consider as big 
data (what big data should be) also change. According to some sources 
[BD:5] today big data features may be summed up in 10 different Vs 
like: volume, velocity, variety, veracity, value, validity, volatility, 
variability, viscosity and vulnerability. Some authors go even further 
and try to distinguish more Vs: 17, 51 or even 56 [BD:6, 7, 8]. Does it 
make sense? Not really. Remember that the factors characterizing big 
data have been conceived in such a way that they define this type of data 
only if they occur all together. While it is possible for 7 or 10 factors, 56 
seems to be a marketing procedure. Below I am going to describe few of 
them which I found to be the most sensible or interesting. Do not get 
attached to specific names but rather concepts behind them.


VOLATILITY


Volatility means for how long data is useful to the user. This concept 
applies to both data obtained a moment ago or just now, requiring 
immediate processing, and data from the past, which over time lose 
their value and eventually become completely useless.
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VISCOSITY


Viscosity characterise a time difference the event occurred and the event 
being described.


VULNERABILITY


Every organizations have a big responsibility to protect every data, 
especially personal data, and be more transparent about its usage. This 
can be addressed by adding vulnerability as another essential 
consideration, with regards to every piece of data which is collected. 
Challenges need to be faced while addressing people’s concerns about 
their personal data – particularly when it comes to medical or financial 
information.


Processing large amount of data you have a chance to discover things 
you would never know working with small data sets. This is no wonder, 
as this is the essence of using big data, isn't it? Most of the time, you 
expect it, but sometimes you can get in trouble or cause trouble for 
someone else.


TODO search for examples
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VISUALIZATION


It's good if results you obtain are visualisable in a meaningful way. Any 
data, especially big which are quite difficult to "summarize" all at once, 
when visualized helps data scientists or analysts understand it better.


So visualisation is another one functional requirement increasing 
usability of your data.


1 0 8



1 0 9



1 1 0



SECTION 7


Summary


Big data characteristic:


• Volume is important as far as it occurs in combination with other 
factors.


• Velocity describes influence of new incoming data on processing 
pipeline.


• Variety results in increased processing times reducing this way 
volume of data possible to processing and limiting the frequency with 
which the data that can be received arrives.


• Veracity results in reliable data; otherwise you have garbage, no 
data.


• Value is about turning raw data into meaningful information no later 
than it is required.


RULE


Factors characterizing big data should be considered all together.
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CHAPTER 4


Big Data paradigms


What you will learn:


• Why big data requires its own engineering 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SECTION 1


Paradigm


Best practices? No, thank you


Word paradigm comes from Greek paradeigma, "pattern, example, 
sample" from the verb paradeiknumi, "exhibit, represent, expose" and 
that from para, "beside, beyond" and deiknumi, "to show, to point out". 


The Oxford English Dictionary defines the paradigm term (pronounced 
/ˈpærədaɪm/) as "a typical example or pattern of something; a pattern 
or model" . The term was introduce to contemporary vocabulary by the 1

historian of science Thomas Kuhn when he adopted the word to refer to 
the set of concepts and practices that define a scientific discipline at 
any particular period of time. In his book, The Structure of Scientific 
Revolutions published in 1962, he defines a scientific paradigm as: 
"universally recognized scientific achievements that, for a time, 
provide model problems and solutions for a community of 
practitioners".


In contemporary, common, science and philosophy meaning, a 
paradigm is a distinct set of concepts or thought patterns, including 
theories, research methods, postulates, and standards for what 
constitutes legitimate contributions to a field.


 Oxford, paradigm, retrieved 2022.04.02, 1

https://en.oxforddictionaries.com/definition/paradigm
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A paradigm from the dogma (see further) is distinguished by several 
essential features:


• It is not given once and for all. It is adopted on the basis of the 
consensus of most researchers, which does not imply that the 
scientists vote on accepting or rejecting the paradigm. What counts is 
the paradigm's correspondence to existing knowledge and the 
fulfilment of many conditions (in terms of, for example, existing 
proofs).


• It may periodically undergo fundamental changes leading to profound 
changes in science what is called the scientific revolution.


• There is no something such absolute correctness.


A good paradigm has several essential features:


• It is consistent logically and conceptually.


• It is as simple as possible and contain only those concepts and 
theories that are really necessary for a given science.


• It give the possibility of creating detailed theories in accordance with 
known facts.


NOTE


Dogma


The term dogma is transliterated in the 17th century from Latin dogma 

meaning "philosophical tenet", derived from the Greek dogma 
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meaning literally "that which one thinks is true" and Greek dokeo "to 

seem good".


It is used in pejorative and non-pejorative senses.


• In the non-pejorative sense, dogma is an official system of principles 

or tenets of a church, or the positions of a philosopher or of a 

philosophical school.


• In the pejorative sense, dogma refers to enforced decisions, such as 

those of aggressive political interests or authorities. More generally it 

is applied to some strong belief that the ones adhering to it are not 

willing to rationally discuss. It is often used to refer to matters related 

to religion, but is not limited to theistic attitudes alone, and is often 

used with respect to political or philosophical ideas.


In this chapter, I intentionally talk about paradigms instead of best 
practices. Why not best practices? – you may ask. Best practices? 
Because according to Toyota, and I agree with that, there is no such 
thing as best practice. When you say best practices, you behave like you 
have just found a Holy Grail and, being satisfied, you will never search 
again for any other improvements. You stuck in what you have. 
Although the key principles of Toyota’s Production System can be 
conveniently summarised, it is vital to remember it represents a way 
of thinking, not just a set of tools and techniques. For those of you 
looking for a quick fix you may as well stop reading now. There isn’t 
one. It’s taken Toyota 60 years to create what they have and they still 
haven’t finished.


NOTE


The Toyota Production System [XXX:5]
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1. Adopt A Long Term Philosophy: It’s Not Just About Making A Profit


• Until most recently, Toyota was different from most companies. 

Decisions are not driven entirely by satisfying short term profit and 

loss forecasts. They actually think beyond the desire to satisfy the 

accountants. Toyota plan and act with the long term in mind, not 

the quarterly results.


• Toyota’s mission and guiding principles is not a poster on the wall, 

they’re practiced each and every day.


2. Investment In People: "We Build People Before We Build Cars"


• Every company says its products are only as good as its people. 

Toyota actually means it. They invest considerable effort in 

recruiting and keeping the very best. The recruitment of an 

assembly line worker can take up to 14 months before they are 

offered a full time contract. When asked: How can you afford this 

kind of recruitment process, Toyota’s response is swift How can YOU 

afford not to?


• Toyota reward team performance, not that of the individual. 

Promotion can take time. Slow promotion and rewards for team 

work is the norm.


• Toyota sees ongoing education as vital. They have even built their 

own University to ensure a steady flow of high quality engineers! 

They regard education as an investment, not a cost.


• Managers are seen as mentors and coaches, teachers not 
dictators.
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• Toyota generally promote from within. They grow leaders rather 
than purchasing them.


3. Focus On The Production Line: Keep The Main Thing The Main 

Thing


• Everyone focuses on servicing the production line. Every other 

activity is seen as non value added.


• An upside down management structure. Team leaders and 

managers support those at the sharp end, not the other way 

around. Assembly line operators are at the top of the pyramid, 
not the bottom.


• There is a genuine belief that only assembly operators and 
engineers add value. Everyone else must justify their reason for 
being!


• Everyone must serve their apprenticeship and develop deep 

understanding of the process. Even those in HR have "time served" 

on the assembly line.


• Managers and team leaders spend up to 80% of their time on 
the production line solving problems and adding value -– not in 
meetings or "emailing".


• Leaders manage from where the work is done, not from their 
office.


4. A Genuine Learning Organisation: "Solving Problems Is Key To Our 

Success"
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• Toyota intentionally runs very, very lean. There are no buffer stocks 

to fall back on. Running lean means that problems can have a 

dramatic impact on production output. Problems have to be fixed, 
and fixed quickly.


• The pervading attitude is that problems and process deviations 
are really good news, providing you learn from them. It’s 
accepted that "real time" solving problems at source saves time 
and money later on downstream.


• Toyota famously adopts the andon approach (which is a 

manufacturing term referring to a system to notify management, 

maintenance, and other workers of a quality or process problem; 

the alert can be activated by button, by the production equipment 

itself or even manually by a worker using a pullcord) to problem 

solving. Deviations are acted upon within minutes and always 

solved at the site of the incident, never from behind a desk. 

Deviations are brought to the surface quickly and solved within 

hours.


• Suggestion schemes are used to generate new ideas and ways of 

working with over 90% of suggestions implemented. Payments are 
weighted towards the small incremental improvements not the 
big ones.


5. Only Focus On The Manufacturing Process And Nothing Else


• They rarely use any new or unproven technology.


• Technology is only used when it can add value and keep things 
simple.
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• Toyota’s attitude is that people do the work, computers only 
move the information. If technology distracts or confuses the user, 

it is simply not used.


6. Standardisation Is The Name Of The Game


• Standardisation is about finding out the scientifically best way of 
doing a task, proving that it works and then "freezing" it. 
Although people are expected to "follow the rules" SOPs (SOP — 

Standard Operating Procedure) are not allowed to stifle innovation 

and further improvement. Users are encouraged to share best 

practice, "hints and tips" and improve SOPs further. SOPs are 

constantly reviewed and improved, not every 2-3 years.


• The level of procedural compliance is very high for one simple 

reason — user involvement. SOPs are developed from the bottom 

up not from the top down. Management have very little input. 

Users are seen as the document owner. They write, design, refine 

and implement all new SOPs. Not surprisingly compliance is not a 

problem because they usually work.


7. The War On Waste: It Never Stops


• Anything that adds no value is removed from the system.


8. Performance Measures: Less Is More!


• Less is more. Toyota measures only what is important and avoids 
the "death by measure".


• They only select measures that drive the right behaviour. For 

example, assembly line workers are rewarded for raising deviations. 
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After all, you learn more from your mistakes than from your 
successes. Contrast this approach with that taken by many [...] 

companies, namely to encourage people to reduce deviation 

numbers. This measure drives completely the wrong behaviour!


Notice that Toyota's principles are applicable to many different and 
distant business branches. They have proven themselves in the large 
and difficult business which is the production of cars. Due to the 
significant competition, it requires considerable creativity and 
innovation both in solving current problems and introducing new 
solutions. And yet this is exactly what working with large datasets also 
requires.


See the summary below. Think which of the listed elements does not 
match big data. Throw it away and use the rest.


1. Always look far ahead in what you do. Short-term gains are a source 
of great losses in the future.


2. Invest in education. Managers are mentors and coaches, teachers 
not dictators. Promote team work, reward team performance, not 
that of the individual. 


3. Managers, team leaders, managers of managers, etc must justify 
their reason for being. Everyone must serve their apprenticeship 
and develop deep understanding of all data processing steps. They 
have to understand technology both in theory and in practice. Write 
code, instal and configure software — without it you will not 
understand what you are doing.


4. When you work with big data stream, you have to fix problems 
quickly to prevent their accumulation and to protect from their 
negative impact on business processes.
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5. Do not blindly follow the current trends in technology. Technology 
is only used when it can add value and keep things simple.


6. Never say: I will not do it, it is against best practice.


7. Listen other people, listen users and involve them. Allow them to 
write, design and refine every step of big data processing.


8. Don't be ashamed to make mistakes. Mistakes are there to be 
learned from.


In the rest of this chapter, you'll see some factors to consider when 
working with large data sets.
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SECTION 2


Factors you should 
consider


In this section you'll read about some factors I suggest to consider when 
working with big data sets. Whether you agree or not you will have to 
face with them, they are real things and you can not get away from 
them. They influence the ways in which you can/should think about big 
data systems. You may adopt them if you think they are applicable to 
your case. You may like them or reject. But you can't deny their 
existence, so it's better to know them.


CPU limits


All we ever heard about the Moore's Law — an empirical law, resulting 
from the observation that the economically optimal number of 
transistors in an integrated circuit increases in subsequent years in 
accordance with the exponential trend (it doubles in almost equal 
lengths of time). The authorship of this law is attributed to Gordon 
Moore, one of the founders of Intel, who in 1965 described a doubling 
every year in the number of components per integrated circuit, and 
projected this rate of growth would continue for at least another decade. 
In 1975, looking forward to the next decade, he revised the forecast to 
doubling every two years. The period is often quoted as 18 months 
because of Intel executive David House, who predicted that chip 
performance would double every 18 months (being a combination of the 
effect of more transistors and the transistors being faster).
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One of the main reasons why this exponential growth is possible is the 
use of smaller and smaller elements in the fabrication process. Today, 
65, 45, 32 and recently 14 nm dominate, when 500 nm technology was 
used in the early 1990s. Taking into account classical physics, these 
dimensions can not be reduced indefinitely – the limit is the size of 
atoms, and the next limitation is the speed of light in a vacuum that sets 
the upper limit for the speed of information transmission. In short: 
computers can't be much faster than they are today.


On the other hand you run at the same time more and more 
applications. Even if you don't know, operating systems executes many 
services to make your work smoother, more natural and enjoyable. All 
this happens without interrupting your work. How it is possible? We 
learned to effectively use concurrency. Thanks to fast context switching 
system assigns its resources for a small time interval to every 
application — executing a bit of each application — giving the 
impression of their simultaneous work. Later a multi-core processors 
were introduce increasing the ability to run concurrently many 
applications. This occurred to be a move in a right direction. Nowadays 
the trend of the entire computer industry is towards the creation of 
multi-core systems and parallel processing (used so far only in efficient 
servers and supercomputers).


To visualise this, I made a comparison. I selected an old dual-core Intel 
Xeon serwer processor. To be more precise, I decided to average 
benchmark results of processors from this family. According to 
Wikipedia [COM: 2]: The 3000 series, codenamed Conroe (product 
code 80557) dual-core Xeon (branded) CPU, released at the end of 
September 2006, I took from [COM: 3] two marks: 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You can compare these values with averaged results for the best CPU 
available today (February 2021):


Top scored desktop AMD:


Top scored server AMD:


Averaging both results you obtain 80330 for CPU Mark (which is 85.5 
times better than Xeon 2006) and 2382 for Thread Mark (which is 2.7 
times better than Xeon 2006).


Intel Xeon 2006 
(2C/2T, DTP 65W)

CPU Mark Thread Mark

3040 (1.86GHz) 789 474

3050 (2.13GHz) 841 762

3060 (2.33GHz) 822 735

3070 (2.66GHz) 1025 1024

3075 (2.66GHz) 1096 1096

3085 (3.00GHz) 1070 1124

Average 940 879

Model CPU Mark Thread Mark

AMD Ryzen Threadripper 
PRO 3995WX 2.7GHz 
(64C/128T, 280W DTP)

88731 2665

Model CPU Mark Thread Mark

AMD EPYC 7702 2.0GHz 
(64C/128T, 200W DTP)

71929 2099
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Top scored desktop Intel:


Top scored server Intel:


Averaging all three Intel results you obtain 37429 for CPU Mark (which 
is 39.8 times better than Xeon 2006) and 2539 for Thread Mark (which 
is 2.9 times better than Xeon 2006).


It's worth to note two things:


• Desktop solutions (at least in case of AMD) outperforms server 
solutions [COM: 4].


• An average CPU mark per thread is not changing much through last 
few years (from 2012 till now, 2021). So why modern CPU are so fast? 
How they get so high Average CPU Mark result? The answer is: they 
use multiple cores, so single core result is multiplied by the number of 
cores. Today the highest number of cores among server CPUs is 28 for 
Intel and 64 for AMD which is doubled to 56 and 128 respectively 
thanks to Hyper-Threading Technology.


Model CPU Mark Thread Mark

Intel Core-i9-10980XE @ 
3.00 (18C/36T, 165W 
DTP)

34290 2653

Model CPU Mark Thread Mark

Intel Xeon W-3275M @ 
2.50GHz (28C/56T, 
205W DTP)

39478 2695

Intel Xeon Gold 6248R @ 
3.00GHz (24C/48T, 
205W DTP)

38521 2270
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Multi-core approach is limited by few factors:


• The more program execute the more data is needed and this can cause 
high delays in access to data.


• Big problem of current technologies is high power consumption and 
heat generated. The latter, in particular, is very problematic as we are 
slowly losing the ability to effectively take away the heat emitted by 
the system.


• To effectively utilize such system, an application must be designed and 
written with paralel execution in mind. In this case concurrency is 
limited according to Amdahl's law
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NOTE


Is it worth to upgrade your CPU? [COM: 5]


Now that Intel’s latest 9th-gen Core mobile chips are on their way, it’s 

time to figure out whether it’ll be worth it to pay top dollar for the new 

chip; buy or keep a laptop with an 8th-gen CPU (plenty of current 

models remain available), or upgrade from your 6th-gen or 7th-gen 

model.


The issues differ from generation to generation. In many cases, we’ve 

said you can wait a few years before upgrading. The 8th-generation 

jump was an exception: It represented one of the biggest laptop CPU 

improvements in a long time, worthy of upgrading even from a 7th-gen 

chip.


With the 9th gen, however, we’re mostly back to the incremental 

clock speed upgrades we’ve seen from Intel for years. That’s not to 

say it’s all underwhelming — because you can get that fancy new 

802.11ax/Wi-Fi 6, too. But for those interested in speed boosts, the 

sparse improvements in core counts mean you can largely ignore 

this series except for the Core i9 lineup.


As you can see, the only true reason that one can be interested in 

upgrading system is rather the number of cores than clock speed 

upgrade.
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AMDAHL'S LAW


In computer architecture, Amdahl's law is a formula which gives the 
theoretical speedup in latency of the execution of a task at fixed 
workload that can be expected of a system whose resources are 
improved. It is named after computer scientist Gene Amdahl, and was 
presented at the AFIPS Spring Joint Computer Conference in 1967.


Amdahl's law is often used in parallel computing to predict the 
theoretical speedup when using multiple processors. For example,


• If a program needs 100 hours using a single processor core, and a 
particular part of the program which takes 50 hour to execute cannot 
be parallelized, while the remaining 50 hours ( ) of 
execution time can be parallelized, then regardless of how many 
processors are devoted to a parallelized execution of this program, the 
minimum execution time cannot be less than that critical 50 hours. 
Hence, the theoretical speedup is limited to at most 2 times 
( ).


• If a program needs 100 hours using a single processor core, and a 
particular part of the program which takes 5 hour to execute cannot be 
parallelized, while the remaining 95 hours ( ) of 
execution time can be parallelized, then regardless of how many 
processors are devoted to a parallelized execution of this program, the 
minimum execution time cannot be less than that critical 5 hours. 
Hence, the theoretical speedup is limited to at most 20 times 
( ).


According to Amdahl's law the theoretical speedup of the execution of 
the whole task increases with the improvement of the resources of the 
system and that regardless of the magnitude of the improvement, the 
theoretical speedup is always limited by the part of the task that cannot 
benefit from the improvement. Any theoretical speedup is limited 
by the serial part of the program. For this reason, parallel 

p = 50/100 = 0.5

1/(1 − p) = 1/(1 − 0.5) = 2

p = 95/100 = 0.95

1/(1 − 0.95) = 20
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computing with many processors is useful only for highly 
parallelizable programs.


RULE


Think parallel.


TODO update all this section from this point


Software availability


Nowadays word are driven by free, open sourced and easy to make first 
step software (get it, install it and run it) and we have a lot of options to 
choose from. In consequence, we can easily mix different technologies 
and test them before we will use them in real production system. This 
give us a great flexibility in terms of tools we use as far as a high 
adaptability to follow changing market requirements.


be able to support and interoperate with a wide range of applications/
systems


be easy extensible


RULE


Be ready to mix technologies, be easily extensible.
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Need to be easy adaptable to follow changing market 
requirements


In today's world...


be easy adaptable to follow changing market requirements


RULE


Be flexible, be agile. Be easy adaptable to follow changing market 

requirements.


Fault tolerancy


be fault tolerant


RULE


Be fault tolerant.


Use what you have
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We can say that there are two options: either we can use specialized, 
carefully tuned one-node system or we can use easy available 
commodity nodes (components). Whether it pays off, it depends on 
what is important to us. Let's point out some aspects.


• Even specialized, carefully tuned one-node system can not be used 
forever and extended infinitely. There will come a time when we will 
have to think not about modifying but about replacing the system.


• What if you spend a lot of money and time to tune your one-node 
system if one day, according to agile approach and some business 
requirement, you will have to change your concept and make 180 
degree turn in system design.


• What is cheaper to buy: one one-node monolithic system or ten 
commodity nodes?


• What is cheaper in everyday running: one one-node monolithic 
system or ten commodity nodes?


• What is easier to maintain: one one-node monolithic system or ten 
commodity nodes?


• What is easier to use: one one-node monolithic system or ten 
commodity nodes? DB problem - distributed queries.


• What is easier to program: one one-node monolithic system or ten 
commodity nodes?


• What is easier to extend: one one-node monolithic system or ten 
commodity nodes?
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RULE


High-tech may not pay off.


High-tech may not pay off


Compare CPU case


RULE


High-tech may not pay off.


Hardware rental


Everybody heard about cloud technology. We can say that clouds are 
everywhere: on the sky which is obvious, and in our life regardless we 
realize about that or not. Many services are cloud-based and this seems 
to be an irreversible trend. Despite cloud is trendy, it offers something 
else: great elasticity. Today it may not pay to own private hardware in 
private location. It may be much easier and cheaper to rent hardware on 
demand which is known as Infrastructure as a Service (IaaS). With this 
you can increase or decrease the size of your infrastructure nearly 
instantaneously with just one-button click, depending on the job you are 
going to do. So today horizontal scaling, i.e. adding or removing nodes 
(computers) to/from a system, is not a problem and can be completed 
on demand within just a few seconds.


On the other hand... cost etc.
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RULE


Rent or own? Think carefully.
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SECTION 3


Summary


Desired properties of a Big Data system


In the proceedings sections some trends and problems were described. 
All of them should be taken into account if we want to "define" any 
patterns or models. Have in mind, that no pattern or model is ethernal 
and given once for all and should be verified and re-adopted on the 
basis of the state of the art knowledge, theory and practice.


A Big Data system should: TODO check, update....


• be scalable;


• be distributed (the databases and computation systems you use for 
Big Data should be aware of their distributed nature);


• be able to support and interoperate with a wide range of applications/
systems;


• be ready to mix technologies, be easily extensible;


• be flexible, be agile; be easy adaptable to follow changing market 
requirements;


• be fault tolerant;


• remember that high-tech may not pay off;
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• think about rent or own.
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CHAPTER 5


Storage concepts for 
Big Data


What you will learn:


• Why big data requires its own engineering 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SECTION 1


Different data formats


Data can come from a variety of sources and be represented in various 
formats or types. The primary formats of data are:


• structured data,


• unstructured data,


• semi-structured data,


• metadata.


TODO add more text to every subsection. Add examples


Structured data


Structured data conforms to a data model or schema and is often 
stored in tabular form. It is used to describe relationships between 
different entities and in consequence most often stored in a relational 
database.


Examples: invoices and receipts, sensor data, online forms, 
spreadsheets.


Unstructured data


1 4 5



Data that does not conform to a data model or data schema at 
all. Unstructured data cannot be stored in predictably ordered columns 
and rows. One type of unstructured data is typically stored in a BLOB 
(binary large object), a catch-all data type available in most relational 
database management systems. Unstructured data may also refer to 
irregularly or randomly repeated column patterns that vary from row to 
row or files of natural language that do not have detailed metadata.


It is estimated that unstructured data makes up to 80% of the data 
within any given enterprise [BDC:2]. Unstructured data has a faster 
growth rate than structured data.


Examples: social media content, emails, text document.


Semi-structured data


Semi-structured data has a defined level of structure and 
consistency, but is not relational in nature. Instead, semi-
structured data is hierarchical or graph-based. This kind of data is 
commonly stored in files that contain text. For instance, XML and JSON 
files are common forms of semi-structured data. Due to the textual 
nature of this data and its conformance to some level of structure, it is 
more easily processed than unstructured data.


Metadata


Metadata is data which are not data themself but provides 
information about a dataset’s characteristics and structure. 
The tracking of metadata is crucial to Big Data processing, storage and 
analysis because it provides information about the data birth as well as 
all processing steps. In many cases metadata helps to process data. For 
example you may keep some metadata about the image resolution and 
number of colors used. Of course you may get this data from graphic 
file, but for the price of longer processing time.
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SECTION 2


Databases


Database


TODO: intro why database, why we need tem etc... because organize wa 
of data storage


Essentially, a database is an organized collection of data. Databases are 
classified by the way they store this data. Early databases were flat and 
limited to simple rows and columns. Today, the popular databases are:


• relational databases (SQL or RDBMS databases), which store their 
data in tables;


• no-relational databases (NoSQL databases), which store their data in 
various formats defined by practical requirements.


SQL DATABASES


I assume you have basic knowledge and understanding of databases 
related concepts and ideas as well as basic skills to work with them. 
That is why bellow I present only a short summary of SQL databases.


• Relational databases are good for handling transactional 
workloads involving small amounts of data with random 
read/write properties. They are ACID-compliant, and, to honor 
this compliance, they are generally restricted to a single node. For 
this reason, they do not provide out-of-the-box redundancy and fault 
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tolerance. 
 
To handle large volumes of data arriving at a fast pace, databases need 
to scale. Relational databases employ vertical scaling, not 
horizontal scaling, which is a more costly and disruptive scaling 
strategy. This makes them less than ideal for long-term storage of data 
that accumulates over time.


• Relational databases generally require data to adhere to a 
schema. As a result, storage of semi-structured and unstructured 
data whose schemas are non-relational is not directly supported. 
 
It is true you can store XML or JSON with the help of built in queries 
and functions but it seems to be against relational theory. Saying the 
truth, you can store anything you want simply as a BLOB object which 
does not mean that the relational databases are suitable for this type 
of data. 
 
Furthermore, with a relational database schema conformance is 
validated at the time of data insert or update by checking the data 
against the constraints of the schema. This introduces overhead 
that creates latency.


• After mentioned latency makes relational databases a less than ideal 
choice for storing high velocity data that needs a highly available 
database storage device with fast data write capability.


As a result, a traditional relational systems are generally not useful as 
the primary storage device in a big data solution environment.


NOSQL DATABASES


Not-only SQL (NoSQL) refers to technologies used to develop next 
generation databases — non-relational databases.
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Below is a list of the principal features of NoSQL storage devices that 
differentiate them from traditional RDBMSs. This list should only be 
considered a general guide, as not all NoSQL storage devices exhibit all 
of these features.


• Schema-less data model 
Data can exist in its raw form.


• High availability 
Often are built on cluster-based technologies that provide fault 
tolerance out of the box.


• Oriented on aggregations 
Unlike relational databases that are most effective with fully 
normalized data, NoSQL storage devices store data in denormalized, 
highly aggregated form, which is a merged, often repeatedly nested, 
data for an object. This eliminates the need for joins and extensive 
mapping between application objects and the data stored in the 
database.


• Scale out rather than scale up 
More nodes can be added to obtain additional storage with a NoSQL 
database, in contrast to having to replace the existing node with a 
better, higher performance/capacity one observed in relational 
databases.


• Sharding and replication 
To support horizontal scaling and provide high availability, a NoSQL 
storage device automatically employs sharding and replication 
techniques where the dataset is partitioned horizontally and then 
copied to multiple nodes.


• Eventual consistency 
Data reads across multiple nodes but may not be consistent 
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immediately after a write. However, all nodes will eventually be in a 
consistent state.


• BASE, not ACID 
BASE compliance requires a database to maintain high availability in 
the event of network/node failure, while not requiring the database to 
be in a consistent state whenever an update occurs. The database can 
be in a soft/inconsistent state until it eventually attains consistency. 
As a result, in consideration of the CAP theorem, NoSQL storage 
devices are generally AP (availability and partition tolerance) or CP 
(consistency and partition tolerance). Third case, the CA (consistency 
and availability) is not considered in NoSQL as partition tolerance is a 
fundamental requirements imposed by distributive nature such 
storage systems.


• Lack of standard SQL 
Data access is generally supported via API based queries, including 
RESTful APIs, whereas some implementations may also provide SQL-
like query capability.


• Lower operational costs 
Many NoSQL databases are built on open source platforms with no 
licensing costs. They can often be deployed on commodity hardware.


As a result, they are not appropriate for use when implementing large 
scale transactional systems.


NEWSQL DATABASES


To me NewSQL databases appear to be a buzzword and marketing term 
for describing systems we want to have but impossible to get.


NewSQL systems, as they are described, combine the ACID properties 
of RDBMS with the availability, scalability and fault tolerance offered by 
NoSQL storage devices. Additionally they support SQL compliant 
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syntax for data definition and data manipulation operations, and they 
often use a logical relational data model for data storage.


As a comment to this idea, I remind you that NoSQL appears because it 
has not been possible to meet these specified requirements at the same 
time. 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SECTION 3


Ways you work with data


Depending on various points of view, needs and possibilities there are 
different ways you may work with your data. Now I want to discuss 
them taking into account storage factors.


Pure data


The most basic and primitive is working with pure data. In context of 
storage, pure data means that you have no intermediate layer separating 
you from data. Simply speaking, you have raw data, saved in the very 
raw form in the simples format you can imagine – as a flat text or binary 
file. Anything you want to get requires a lot of commitment on your 
part. You have to know where data you are looking for are located inside 
the file, how many bytes or characters you have to read and which 
decoding you should apply. If you know this, next you have to write on 
your own custom code. If you are lucky, you may use some libraries like 
pandas or NumPy. Otherwise, you have to write everything from 
scratch. This approach gives you, probably, the highest control on your 
data, what and how you process. At the same time, it is also the most 
time consuming approach. It requires extensive knowledge, various 
skills and patience, and various mistakes happen very often. You have to 
be very cautious and responsible because in many cases you work with 
somehow collected pure data that cannot be derived from anything else 
than original data source which may not exist anymore. Destroying data  
can lead to irreversible disaster, because there may be no way to 
recovery what you have collected.
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Queries


Queries are questions you ask of your data. Queries changes your 
perspective. Now you can focus on digging or discovering information 
"hidden" in (pure) data instead of struggling with their physical layout 
and organization. With queries you say what you want to get with 
significantly reduced need for knowledge about underlying data 
organization. 


Saying what instead of how while searching you are free of all low level 
details. This makes queries and all other accompanying processes much 
more easier and understandable even for nontechnical people compared 
to pure data. This is really important, because in most cases data, in 
order to extract informations and knowledge from them, are processed 
by people who are not IT specialists by education. Apart from that, for 
example SQL queries are just much more readable than code written in 
C or Python. This helps to keep your code and intention clear and easy 
to maintain.


Views


View is an abstraction you put over your various sources of data. It 
shows what you have in the form which is much more convenient to 
further processing. In most cases view rather presents what is derived 
from data or information you already have than create or acquire new 
items. To make it simple, they are designed to help query data and 
answer questions about information "hidden" in pure data.


Views are very common in, but not limited to, databases where it 
combines, often with the help of joins, data from two or more tables. 
Combine means not "glue" together to make huge records but rather to 
select what you really need or present it in the form which simplifies 
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next processing steps. This makes them convenient to "hide" (or 
abstract) complicated queries. View can but often doesn’t store real data 
data and is computed in real time on demand. Because you can query 
view like you can query simple table, some refer to a views as virtual 
tables.


Views provide several advantages over tables:


• Simplicity Views can join multiple tables into a single virtual table. 
This way views provide a simplified and flattened "image" of the 
database perfectly suitable for reporting or ad-hoc queries.


• Preprocess data With views you can present data aggregated from 
multiple tables as it is a natural part of the data. You can also present 
data in convenient way, for example change its format or type.


• Apply business rules You can use view to define various business 
rules to present data in one unified way. For example, you may create 
a view to present the most profitable product from your shop, where 
the term profitable depends on the adopted business strategy.


• Security View allows you to control what, when and how is 
presented or visible for queries you make on view. You can grant no 
permissions on the pure data table and the same time create view that 
limits column or row access and grant permissions to users to see the 
view (which in result allows them to see some but not all data). This 
way view can restrict direct access to a table, yet allow users to access 
only what is intended for them. Depending on permissions you may 
have an access to all records, limited numer or none of them. For 
example with view you can simply filter only last inserted or updated 
record related to given object, keeping the entire history of all changes 
hidden.


• Space View take up very little space, as it defines only how to present 
data but not store real data (unless you use materialized view which is 
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a database object that contains the results of a query). Based on some 
tables you may create many different views. All of them will present 
"new" data (old data in a new way) based on the same set of pure data 
which is stored only once in its source table.
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SECTION 4


Fact based data model


There are many ways you could choose to represent master dataset. You 
have a choice between traditional relational tables, structured XML,  
semistructured JSON documents or any other possibilities you only 
know. It's up to your needs and knowledge. All of them tells you nothing 
about how to store your data; they are about physical method. In this 
part I want to describe logical data model known as fact-based model.


To understand the idea behind this method, consider the following 
initial state of the data "packed" into relational table:


Now imagine you change c2 to c22. The worst solution is when you 
simply update it:


table

id data_1 data_2 data_3

1 a1 b1 c1

2 a2 b2 c2

3 a3 b3 c3

table

id data_1 data_2 data_3

1 a1 b1 c1

2 a2 b2 c22
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This way you irrevocably lost the history of your data. The consequence 
is the inability to recover the previous values in case the new value turns 
out to be incorrect.


Much better is when you use timestamp, as it was explained in Example 
1.2 – track every data change of Chapter 3 Big Data concepts and 
terminology, Section 4: Most wanted properties of data, Subsection: 
Immutable form:


Now you keep the whole history. The drawback of this approach is high 
level of redundancy: record with id=2 and id=4 has the same data in 
column data_1 and data_2.


Another problem you may face with is nonexisting data. If nonexisting 
why this is a problem? Because even data which does not exist occupies 
some storage space. The wider records you have, the more empty cells 
you may find:


3 a3 b3 c3

table

id data_1 data_2 data_3 time

1 a1 b1 c1 t1

2 a2 b2 c2 t2

3 a3 b3 c3 t3

4 a2 b2 c22 t4

table

id data_1 data_2 data_3 time

1 a1 b1 c1 t1

2 a2 b2 c2 t2
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Fact-based model allows to solve after-mentioned problems. In this 
approach you store only what has been changed and what is really 
needed; you record only relevant facts. In this approach every data is 
stored in separate table:


Physical data scattering does not have to be a problem because it can be 
masked, hidden from the user, with the help of views which will present 
data from many tables in one. User may have no knowledge about their 
underlying structure.


When you change c2 to c22, you have to perform only a "small" insert 
to one table:


3 a3 b3 c3 t3

4 a2 b2 c22 t4

5 a4 c4 t5

table for data_1 table for data_2 table for data_3

id oid d_1 t id oid d_2 t id oid d_3 t

1 1 a1 t1 1 1 b1 t1 1 1 c1 t1

2 2 a2 t2 2 2 b2 t2 2 2 c2 t2

3 3 a3 t3 3 3 b3 t3 3 3 c3 t3

table for data_1 table for data_2 table for data_3

id oid d_1 t id oid d_2 t id oid d_3 t

1 1 a1 t1 1 1 b1 t1 1 1 c1 t1

2 2 a2 t2 2 2 b2 t2 2 2 c2 t2

3 3 a3 t3 3 3 b3 t3 3 3 c3 t3

4 2 c22 t4

1 6 3



Fact-based model also gracefully handles nonexisting data:


As you can see, if data doesn't exist there is no need to store any 
information about this at all.


SUMMARY – BENEFITS OF THE FACT-BASED MODEL


A fact-based model is an ever-growing list of immutable, timestamped 
atomic facts. For sure this isn’t a pattern that relational databases were 
built to support as it requires a tones of joins, but who said you had to 
use a relational databases at all. This model provides a simple but 
powerful representation of your data by naturally keeping a full history 
of each entity over time. Its append-only and high level of distributivity 
nature supports data partitioning, makes it easy to implement in a 
distributed systems.


table for data_1 table for data_2 table for data_3

id oid d_1 t id oid d_2 t id oid d_3 t

1 1 a1 t1 1 1 b1 t1 1 1 c1 t1

2 2 a2 t2 2 2 b2 t2 2 2 c2 t2

3 3 a3 t3 3 3 b3 t3 3 3 c3 t3

4 4 a4 t5 4 2 c22 t4

5 4 c4 t5
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SECTION 5


Data warehouse, lake, 
mart...


Data warehouse


A data warehouse is central repository of integrated data from one or 
more disparate sources. It store current and historical data in one 
single place that are used for reporting and data analysis and is 
considered a core component of business intelligence.


NOTE


Business intelligence


Business intelligence is a set of methodologies, processes, 

architectures, and technologies that transform raw data into meaningful 

and useful information used to enable more effective strategic, tactical, 

and operational insights and decision-making. It combine:


• data gathering,


• data storage,


• knowledge management,
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• analysis


to evaluate complex information for presentation to planners and 

decision makers, with the objective of improving the timeliness and the 

quality of the input to the decision process.


A typical data warehouse often includes the following:


• Database (very often relational) for data storage and management.


• A solutions to extract, load and transform (ELT) data to prepare it for 
analysis.


• Statistical analysis, reporting and data mining functions.


• Possibly advanced analytical applications that generate useful 
information through the use of data analytics and algorithms based on 
artificial intelligence (AI).


• Tools for the visualization and presentation of data to business users.


As you can see, warehouse architecture is made up of multiple levels 
called tiers. The bottom tier of the architecture is the database server, 
where data is loaded and stored. The middle tier consists of the 
analytics engine that is used to access and analyze the data. The top tier 
is the front-end client that presents results through reporting, analysis, 
and data mining tools.


A place of data warehouse in a basic architecture of a business system:


TODO make an image


                   ETL  
Data         Stagin  Warehouse     Data        Users  
sources      area                  marts  
Operational          Meta data     Sales       Analysis (1,2)  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system  
Flat file            Raw data      Purchasing  Reporting (1,2)  
                     Summary data  Inventory   Mining (2,3)

THE FOUR PILLARS OF THE DATA WAREHOUSE


William Inmon, one of the precursors of the data warehouse concept, 
points out that data warehouses are characterized by four fundamental 
conditions:


• Oriented to a single subject or a particular functional area. For 
example, it is oriented to company sales.


• Unify and create consistency among data from disparate sources.


• Persistent and immutable. Once data enters a data warehouse, it stays 
there and does not change.


• Structured in time intervals. To provide information from a historical 
perspective, data warehouses record information over different 
intervals, such as weekly, monthly, quarterly, etc.


A well-designed data warehouse is high-performance and responsive to 
queries. It also provides flexibility so users of the data warehouse can 
query from different points of view. Users can alternate between a high-
level overview and deep queries at the greatest level of detail as they 
wish.


BENEFITS


You shouldn't think about data warehouse as a simple copy of data from 
the source transaction systems. In fact this is much more than copy, 
because architectural complexity provides the opportunity to:


• Integrate data from multiple sources into a single database and data 
model enabling a central view across the enterprise.
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• Improve data quality, consistency and accuracy.


• Organize and disambiguate repetitive data.


• Independently on data source maintain data history.


• Behaves like a data buffer and separate analytics processing from 
transactional databases, which improves performance of both systems 
by mitigate the problem of database isolation level lock contention in 
transaction processing systems caused by attempts to run large, long-
running analysis queries in transaction processing databases.


• Transform the data so that it makes sense to the business users.


Data warehouse concepts


FACTS AND DIMENSIONS


Facts are the measurable events related to the functional area covered 
by a data warehouse. They describe quantitative transactional data like 
measurements, metrics, or the values ready for analysis and 
consequently they are often of numerical nature. Facts are stored in fact 
tables, and have a foreign key relationship with a number of dimension 
tables. You can find a fact table at the center of a snowflake schema or 
star schema.


Dimensions, on the other hand, are collections of reference 
information about the facts in a data warehouse. Dimensions categorize 
and describe the facts recorded in a data warehouse to provide 
meaningful, categorized, and descriptive answers to business questions. 
A dimensional table stores information that provides dimensions of a 
fact and is joined by a foreign key to a fact table. You can find dimension 
tables at the edges of a snowflake or star schema. They contain detailed 
data that is descriptive, complete, and quite wordy.
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To illustrate these concepts, consider the following set of fact and 
dimensions:


FACTS  
 
Sales  
==========  
transaction_id  
sales_dollars  
sales_units  
...  
product_key (FK)  
store_key (FK)  
date_key (FK)  
 
 
DIMENSIONS  
 
Product                Store              Date  
===================    ==============     =============  
product_key (PK)       store_key (PK)     date_key (PK)  
product_description    store_name         date  
product_type           store_type         year  
category_name          store_region       day_of_week  
...                    ...                ...

For this set you can:


• Calculate sum of sales in dollars using only sales_dollars column 
from fact table.


• Filter your data by year using year column from Date dimension 
table.


• Group by category using category_name column from Product 
dimension.


The following table summarizes the major differences between facts and 
dimensions:
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THE MOST COMMON DATA WAREHOUSE SCHEMAS


Data Warehouse environment usually transforms the relational data 
model into some special architectures. There are many schema models 
designed for data warehousing but the most commonly used are:


• star schema,


• snowflake schema,


• fact constellation schema.


A star schema is called so because the fact table sits at the center of the 
logical diagram, and the small dimensional tables branch off to form the 
points of the star. Each star schema database only has a single fact table.


A snowflake schema database is similar to a star schema in that it has 
a single fact table and many dimension tables. However, for a snowflake 
schema, each dimension table might have foreign keys that relate to 
other dimension tables.


The main difference between star schema and snowflake schema is that 
the dimension table of the snowflake schema is maintained in the 

Characteristics Fact Dimension

What the data Measurements, metrics, 
and facts

Descriptive attributes

Design Located at the center of a 
star or snowflake schema

Located at the edges of 
the star or snowflake 
schema

Complexity Atomic Wordy, descriptive, 
complete

Data organization Does not contain a 
hierarchy

Contains hierarchies
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normalized form to reduce redundancy. The advantage here is that such 
tables (normalized) are easy to maintain and save storage space. 
However, it also means that more joins will be needed to execute the 
query. This will adversely impact system performance. 


Fact constellation, also known as galaxy, is a schema for 
representing multidimensional model. It is a collection of multiple fact 
tables having some common dimension tables. It can be viewed as a 
collection of several star schemas and hence the name.


THE MOST COMMON DATA WAREHOUSE DESIGN


When it comes to designing a data warehouse, the two most commonly 
discussed methods are the approaches introduced by Bill Inmon and 
Ralph Kimball.


Inmon’s method uses the relational (ER) model which is the 3NF 
whereas Kimbal’s approach uses a multidimensional model which is a 
star schema and snowflakes.


Inmon argues that relational model helps attain enterprise-wide data 
consistency and simplifies to spawn off the data marts. In this approach, 
analytics systems can only access data from the enterprise data 
warehouse through data marts. The data is stored in the normalized 
form and the warehouse is not created directly. Instead, the data is fed 
into different data marts which the data is filtered down to the subset of 
specific needs. As an example, the sales department will have data that 
only used by the sales team. Because Bill Inmon recommend starting 
with building a centralized enterprise-wide data warehouse by several 
databases to the analytical needs of departments, which are later known 
as data marts. Hence for this approach the name top-down is used.


Kimbal argues that dimensional model helps actual users to 
understand, analyze, aggregate, and explore inconsistencies of data 
more easily. In this approach, keeping in mind the most important 
business aspects or departments, first you have to create data marts. 
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These provide a thin view into the organisational data and, as and when 
required, these can be combined into a larger data warehouse. This 
approach is known under the bottom-up name.


Kimball’s bottom-up approach


DATA WAREHOUSE VS DATABASE


Data mart


Characteristics Warehouse Database

Use for Analytics, reporting, big 
data

Transaction processing

Data source Data collected and 
normalized from many 
sources

Data captured as-is from 
a single source

Data capture Bulk write operations 
typically on a 
predetermined batch 
schedule

Optimized for continuous 
write operations as new 
data is available to 
maximize transaction 
throughput

Data normalization Denormalized schemas, 
such as the star schema 
or snowflake schema

Highly normalized, static 
schemas

Data storage Optimized for simplicity 
of access and high-speed 
query performance

Optimized for high 
throughout write 
operations to a single 
row-oriented physical 
block
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A data mart is a data warehouse that serves the needs of a specific team 
or business unit, like finance, marketing, or sales. It is smaller, more 
focused, and may contain summaries of data that best serve its 
community of users. A data mart might be a portion of a data 
warehouse, too.


DATA MART VS DATA WAREHOUSE


Data lake


Data lakes and data warehouses both act as repositories, but they are 
designed for very different purposes. Data warehouses work best for 
specific projects while data lakes are a centralized repository for all data, 
including structured, semi-structured, and unstructured. The data lake 
tends to ingest data very quickly and prepare it later as people need it. 
A data warehouse requires that the data be organized in a tabular 
format, which is where the schema comes into play. The tabular format 
is needed so that SQL can be used to query the data. But not all 
applications require data to be in tabular format. Some applications, 
like big data analytics, full text search, and machine learning, can access 
data even if it is ‘semi-structured’ or completely unstructured.


Characteristics Mart Warehouse

Use by A single community or 
department

Organization-wide

Use for Decentralized, specific 
subject area

Centralized, multiple 
subject areas integrated 
together

Data source A single or a few sources, 
or a portion of data 
already collected in a 
data warehouse

Many sources

Size Small Large
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DATA LAKE VS DATA WAREHOUSE


Data swamp: When your data lake gets messy and is unmanageable, it 
becomes a data swamp.


Data mesh


TODO


The data mesh is widely considered the next big architectural shift in 
data. Much in the same way that software engineering teams 
transitioned from monolithic applications to microservice architectures, 
the data mesh is, in many ways, the data platform version of 
microservices. The name data mesh comes from mesh networking, as 
this new model is also based on a decentralized architecture and 
proposes to move beyond a monolithic data lake.


NOTE


Mesh network


Characteristics Lake Warehouse

Data All data, including 
structured, semi-
structured, and 
unstructured

Structured data, mostly 
relational data

Data quality Any data that may or 
may not be curated (i.e. 
raw data)

Highly curated data that 
serves as the central 
version of the truth

Data source A single or a few sources, 
or a portion of data 
already collected in a 
data warehouse

Many sources

Use by Optimized for managing 
all incoming big data

Work best for specific 
projects with set resources
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A mesh network (or simply meshnet) is a local network topology in 

which the infrastructure nodes (i.e. bridges, switches, and other 

infrastructure devices) connect directly, dynamically and non-

hierarchically to as many other nodes as possible and cooperate with 

one another to efficiently route data to and from clients.


This lack of dependency on one node allows for every node to 

participate in the relay of information. Mesh networks dynamically self-

organize and self-configure, which can reduce installation overhead. 

The ability to self-configure enables dynamic distribution of workloads, 

particularly in the event a few nodes should fail. This in turn contributes 

to fault-tolerance and reduced maintenance costs.


Mesh topology may be contrasted with conventional star/tree local 

network topologies in which the bridges/switches are directly linked to 

only a small subset of other bridges/switches, and the links between 

these infrastructure neighbours are hierarchical.


Data mesh is not a technology stack or physical architecture. Data mesh 
is a process and architectural paradigm, originated in 2019, that 
delegates responsibility for specific data sets to domains, or areas of the 
business that have the requisite subject matter expertise to know what 
the data is supposed to represent and how it is to be used. Instead of 
assuming that data will reside in a data lake, each area of business is 
responsible for choosing how to host and serve the datasets that they 
own. Unlike traditional monolithic data infrastructures that handle the 
consumption, storage, transformation, and output of data in one central 
data lake, a data mesh supports distributed, domain-specific data 
consumers and views “data-as-a-product,” with each domain handling 
their own data pipelines.
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SECTION 6


Low level storage ideas


On-disk storage


On-disk data storage is a fundamental means of data storage utilizes low 
cost hard disk drives for long term storage. Generally it can be 
implemented via:


• a files on a distributed file system,


• a database.


DISTRIBUTED FILE SYSTEMS


A storage implemented with a distributed file system provides simple, 
fast access data storage that is capable of storing large datasets that are 
non-relational in nature, such as semi-structured (XML, JSON) and 
unstructured (photos, sound, simple text files) data. Although based on 
straight-forward file locking mechanisms for concurrency control, it 
provides fast read/write capability, which addresses the velocity 
characteristic of Big Data.


A distributed file system is not dedicated to handle datasets 
comprising a large number of small files as this requires 
excessive disk-seek activity, slowing down the overall data access. It 
works best with fewer but larger files accessed in a sequential 
manner. As a result, distributed file system storage is suitable when 
large datasets of raw data are to be stored or when archiving of datasets 
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is required. Because of this feature, this means of storage may require 
combining multiple smaller files into a single file to enable optimum 
storage and processing either on operating system or file system level, 
or on application level. This allows to have increased performance when 
data must be accessed in streaming mode with no random reads and 
writes.


A distributed file system storage, by design, provides out of box 
redundancy and high availability by copying data to multiple locations 
via replication. This allows almost unlimited horizontal scaling.


DATABASES


xxx


TODO explain, say something about inmemory databases


one more abstraction layer


In-memory storage


An in-memory storage generally utilizes the main memory of a 
computer as its storage medium to provide fast data access reducing the 
latency of disk I/O operations.


This type of storage is appropriate when:


• Data arrives at a fast pace and requires realtime analytics or stream 
processing.


• The same dataset is required by multiple data processing jobs.


An in-memory solutions are not appropriate when:
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• Data processing consists of batch processing.


• Very large amounts of data need to be persisted for a long time.


• Datasets are extremely large and do not fit into the available memory.


• High level of support for durable data storage is required.


• An enterprise has a limited budget, as setting up an in-memory 
storage may require upgrading processing nodes, which could either 
be done by node replacement or by adding more RAM.
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CHAPTER 6


Processing concepts for 
Big Data


What you will learn:


• Why big data requires its own engineering 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SECTION 1


OLTP and OLAP


OLTP


The term transaction can have two different meanings:


• In the realm of computers or database, transaction denotes an atomic 
change of state. 


• In the realm of business it typically denotes an exchange of data or 
informations.


It is not rare that transactions of the first type are used to record 
transactions of the second.


OLTP, online transaction processing, has been used to refer to 
processing in which the system responds immediately to user requests. 
An automated teller machine (ATM) for a bank is an example of a 
commercial transaction processing application. Online transaction 
processing applications have high throughput and are insert- or update-
intensive. OLTP systems emphasize very fast query processing and 
maintaining data integrity in multi-access environments. Very often 
these applications are used concurrently by hundreds of users. The key 
goals of OLTP applications are availability, speed, concurrency and 
recoverability. Effectiveness of such systems is measured by the number 
of transactions per second. Usually OLTP databases contain detailed 
and current data.
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OLAP


OLAP, online analytical processing, tools enable users to analyze data 
organized multidimensionally in an interactively way from multiple 
perspectives. Compared to OLTP, OLAP is generally characterized by 
much more complex queries involving aggregations, in a larger volume, 
for the purpose of business intelligence or reporting rather than to 
process transactions. Whereas OLTP systems process all kinds of 
queries (read, insert, update and delete), OLAP is generally optimized 
for read only and might not even support other kinds of queries. 
Effectiveness of such systems is measured by the response time.


Summary


The following table summarizes the major differences between OLTP 
and OLAP system design:


Characteristics OLTP System 

Online Transaction 

Processing 

(Operational System)

OLAP System 

Online Analytical 

Processing 

(Data Warehouse)

Source of data Operational data; OLTPs 
are the original source of 
the data

Consolidation data; OLAP 
data comes from the 
various OLTP databases

Purpose of data To control and run 
fundamental business 
tasks

To help with planning, 
problem solving, and 
decision support

What the data Reveals a snapshot of 
ongoing business 
processes

Multi-dimensional views of 
various kinds of business 
activities

Inserts and Updates Short and fast inserts and 
updates initiated by end 
users

Periodic long-running 
batch jobs refresh the 
data
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Queries Simple queries returning 
relatively few records

Often complex queries 
involving aggregations

Processing Speed Typically very fast Depends on the amount 
of data involved; batch 
data refreshes and 
complex queries may take 
many hours

Space Requirements Can be relatively small if 
historical data is archived

Larger due to the 
existence of aggregation 
structures and history 
data; requires more 
indexes than OLTP

Database Design Highly normalized with 
many tables

Typically de-normalized 
with fewer tables; use of 
star and/or snowflake 
schemas

Characteristics OLTP System 

Online Transaction 

Processing 

(Operational System)

OLAP System 

Online Analytical 

Processing 

(Data Warehouse)
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SECTION 2


Paralelizm


Divide and conquer


In section 2: Factors you should consider of chapter 4: Big Data 
paradigms I tried to convince you to think parallel, to implement every 
solution as a set of jobs executed in parallel. Easy to say, harder to do 
because not every task or problem is open to parallel execution and very 
often you may have a difficulty deciding if this is possible or not. 


You may find candidates of such an algorithms or ideas how to 
implement a new one for a new problem looking into algorithm 
gathered under the divide-and-conquer name. In computer science, 
divide and conquer is an algorithm design paradigm based on multi-
branched recursion. A divide-and-conquer algorithm works by 
recursively breaking down a problem into two or more sub-problems of 
the same or related type, until these become simple enough to be solved 
directly. The solutions to the sub-problems are then combined to give a 
solution to the original problem. Following you have some standard 
algorithms that share this divide and conquer nature:


• binary search,


• merge sort,


• quicksort,


• closest pair of points,
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• Strassen algorithm for efficient matrices multiplication,


• Karatsuba algorithm for fast multiplication.


To be honest, divide-and-conquer approach is something you have to 
use, not exactly something you want to use. Without any doubts, in 
most cases it is much easier to implement data processing algorithm  
step by step than in "chunks". One problem with step by step approach 
is that you can not speed up this process infinitely. As you know, 
according to Amdahl's law, theoretical sped up is limited by the serial 
part of the program. For this reason, parallel computing with many 
processors is useful only for highly parallelizable programs.


The divide-and-conquer principle is generally achieved using one of the 
following approaches:


• Parallel data processing 
Parallel data processing involves the simultaneous execution of 
multiple sub-tasks that collectively comprise a larger task. The goal is 
to reduce the execution time by dividing a single larger task into 
multiple smaller tasks that run concurrently — in this way you make a 
gain in time.


• Distributed data processing 
Distributed data processing is closely related to parallel data 
processing however, it is always achieved through physically separate 
machines that are networked together.


Different faces of parallelizm


Among many different factors you can take into accounts talking about 
parallelizm is what is parallelised.
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Task parallelism 
Task parallelism refers to the parallelization of data processing by 
dividing a task into sub-tasks and running each sub-task on a 
separate node. Since the unit of division is task, each sub-task may 
executes (in parallel) a different algorithm, with its own copy of the 
same data or different data as its input.


Data parallelism 
Data parallelism refers to the parallelization of data processing by 
dividing a dataset into multiple datasets and processing each sub-
dataset in parallel. The sub-datasets are distributed across multiple 
nodes and are all processed using the same algorithm.


In both cases, at the end of the whole process, the output from multiple 
nodes is joined together to obtain the final set of results.
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SECTION 3


Cluster, grid, cloud, fog 
and edge


Cluster and grid


Both cluster and grid refer to a some kind of virtual super computer but 
they differ in essential details.


A cluster (of computers) is a set of loosely or tightly connected 
computers that work together so that, in many respects, they can be 
viewed as a single system. Cluster has each node set to perform the 
same task, controlled and scheduled by software.


Grids is composed of many networked loosely coupled computers acting 
together to perform large tasks. Grid computing combines computers 
from multiple administrative domains to reach a common goal, to solve 
a single task, and may then disappear if no need any more. Grid 
computers also tend to be more heterogeneous and geographically 
dispersed (thus not physically coupled) than cluster computers.


Grid is a "system" that manages resources under the direct control of 
different computers and connected computer networks. Grid resources 
can be administered by various organizations. Sharing resources follows 
the local resource management policy used in given organization.
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The following table summarizes the major differences between cluster 
and grid:


Whatever you choose, an additional benefit of these technologies is that 
they provide inherent redundancy and fault tolerance, as they consist of 
physically separate nodes.


Cloud


Cloud computing makes computer system resources, especially storage 
and computing power, available on demand without need of real access 
to hardware and direct active management by the user. 


Edge


Characteristics Cluster Grid

Range Very local Geographically dispersed

Type of resources Unified hardware under 
the control of one system

Heterogeneous hardware 
and software

Number of resources Constant Very dynamic

Availability Full control Variable over time

Reliability High Low

Consistency The same policies for all 
under the control of one 
organization

Various security and 
resource management 
requirements and policies
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Edge computing is a distributed computing paradigm that brings 
computation and data storage closer to the sources of data – in close 
proximity to the physical location creating the data. Edge computing 
operates on "instant data" that is real-time data generated by sensors or 
users. With this technology, data is processed and transmitted to the 
devices instantly. In most cases edge nodes transmit all the data 
captured or generated by the device regardless of the importance of the 
data. This is not intended as a competitor of cloud but rather as an 
"input" layer separating cloud and big data tools from low level simple 
devices and protocols used to collect data. Both levels cooperate but 
require completely different hardware and software stacks. Such an 
approach is expected to improve response times and save bandwidth.


Fog


Edge and fog computing share a lot of similarities. Essentially, both are 
enablers of data traffic to the cloud. Edge is responsible for collecting 
data. Fog computing is a compute layer between the cloud and the edge. 
Where edge computing might send huge streams of data directly to the 
cloud, fog computing can receive the data from the edge layer before it 
reaches the cloud and then analyze and decide what’s important and 
what isn’t. The relevant data gets stored in the cloud, while the 
irrelevant data can be simply rejected, or analyzed locally at the fog 
layer to support or strengthen processing at this level for example 
improving learning models. You can say, fog computing acts as a 
mediator between the edge and the cloud for various purposes, such as 
data filtering, aggregating, transforming etc. In this way, fog computing 
saves a lot of bandwidth, processing and space in the cloud and 
transfers really expected data quickly. 
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Summary


Sometimes the term edge computing is used synonymously with fog 
computing. There is no clear consensus as to whether they are the same 
or not [TEC:1]:


"Fog computing and edge computing are effectively the same thing. 
Both are concerned with leveraging the computing capabilities within 
a local network to carry out computation tasks that would ordinarily 
have been carried out in the cloud," said Jessica Califano, head of 
marketing and communications at Temboo.


"Edge computing usually occurs directly on the devices to which the 
sensors are attached or a gateway device that is physically 'close' to 
the sensors. Fog computing moves the edge computing activities to 
processors that are connected to the LAN or into the LAN hardware 
itself so they may be physically more distant from the sensors and 
actuators." said Paul Butterworth, co-founder and CTO at Vantiq.


In my opinion it is reasonable to keep them separated as they logically 
separate totally different requirements about data acquisition, 
processing, storage etc.


Cloud layer


Operates on thousands of nodes. Implementing business logic. Use 
business analytics, business intelligence, big data processing, data 
warehousing.


Fog layer


Operates on millions of nodes (separated servers) in local networks. 
Responsible for preliminary data analysis and reduction.


Edge layer
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Operates on billions of nodes, each of which is an embedded system 
responsible for real-time data processing. Processing understood as 
collecting data and sending them in chunks to save bandwidth. If it is 
relevant, also more sophisticated actions on data can be performed, 
however it is not very common in this layer.
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SECTION 4


Ways to process data


When it comes to big data, there are two main ways to process data. The 
first – and more traditional – approach is batch processing, the second 
is real-time processing.


Batch processing


As the term implies, batch-based data processing involves collecting a 
series of data, storing it until a given quantity of data has been collected, 
then processing all of that data as a one group named a batch. 


It’s much different from processing each piece of data right after it was 
collected.


Processing data in batches was a natural choice with older technologies 
when hardware, especially I/O operations, was a serious bottleneck of 
processing. To speedup you had to limit the time you needed to locate 
and read the data you wanted to use. Because common mass storages of 
that days were magnetic tapes the most effective way of getting data was 
sequential read without fast forwarding and rewinding the tape. To 
meet this requirements the data to be processed was arranged in 
advance in the correct order; the batch was prepared.


Doing so reduces the number of I/O events that need to take place but 
also help to save network bandwidth by compressing data within 
batches. Very often batch processing is the processing of a large volume 
of data, that is collected over a period of time, all at once. It means that 
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jobs are typically completed on well known data set (this data set is 
defined and known before you start processing) in non-stop, sequential 
order. Because the whole batch is completely ready before you start 
processing it can be used offline – hence very often offline processing 
term is used instead of batch processing. You have a complete control 
as to when to start the processing of this type. This way you can delay 
(postpone) processing till the computer is not executing very many 
tasks. It also helps balance the overall load and system utilization. 
Obviously, because of data size, it will take large amount of time for that 
data to be processed. Batch processing works well in situations where 
you don’t need real-time analytics results, and when it is more 
important to process large volumes of data to get more detailed insights 
than it is to get fast analytics results. Another worth to mention 
characteristic is that because you have all data in a batch you can infer 
much more from that data than from processing single data record one 
by one.


Real-time


Although you probably intuitively understand the term real-time, it is 
not so simple to define it precisely. The meaning of real is highly 
application specific.


Sub-second real time


This type of real-time is typical for engineers – when they say real-time, 
they are usually referring to sub-second response time, very often in 
context of embedded systems. In this kind of real-time data processing, 
extreme levels of performance are key to success – even nanoseconds 
count. If this is what you think when you say real-time data processing, 
it means you need the data to come in, the condition for response to be 
evaluated, and the response to happen, all generally, in less than a 
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second. A lot of work to be done. And if someone else’s system can do it 
a few nanoseconds faster, you might lose out. In this kind of real-time, 
pushing the limits of performance isn’t a bonus; it’s a necessity.


You think about this type of real-timing when you say:


• The sensors data is monitored in real-time to catch problems early.


• This stock exchange application has to bid in real-time or we’ll lose 
money.


Human comfortable real-time response


This type of real-time is typical for ordinary users – when they say real-
time, they are usually referring to response time that not bore or 
frustrate the users. The performance requirement for this kind of 
processing is usually a couple of seconds – performance matters, but it 
may not be the number one criteria. In some cases, a difference of a 
single second can be critical, but for the most part, as long as the 
application responds before the user decides to give up what he or she 
was going to do, then the performance requirement is met.


You think about this type of real-timing when you say:


• This website needs to respond to user requests in real-time or we’ll 
lose sales.


• We need real-time visualizations for our business intelligence team, 
no matter how big the data.


Take an action as a response for some event
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This type of real-time is typical for changes in the data or user actions. 
When you say real-time in this context, you are usually referring to 
response time opposite of scheduled. If something happen (an event 
occurs), do not wait but act – so called event-driven processing model.  
The performance requirement for this is generally before another event 
happens. Instead of happening in a particular time interval, event-
driven data processing happens when a certain action or condition 
triggers it. You don’t know precisely when you will need data processing 
done, but as soon as a certain thing happens, that’s when the need for 
data processing is triggered. 


There are actually two different performance requirements for event-
driven data processing. First, the data processing system has to be 
finished working and ready to start again before the next event happens. 
So, if on average, the events happen no closer together than five 
minutes, a data processing time frame of 2-3 minutes is excellent. If the 
events tend to happen an average of 10 seconds apart, then clearly, a 2-3 
minute processing time would be unacceptable.


You think about this type of real-timing when you say:


• As changes are made to the database, the replication process copies 
them out to the cluster in real-time.


Stream processing


This type of real-time is typical for processing the data as it flows in, one 
piece at a time. It's similar to event based real time processing. 


Also here if something happen (you receive new data), do not wait but 
act – exactly as you do with events. The difference is that events may 
come with an unpredictable times, with varying frequency; simply 
speaking: event occurs, you process. In stream processing, very often, 
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you receive data with constant frequency are you can estimate the time 
it arrives. What is more important, once the data starts coming in, it 
generally doesn’t end – just like a water in a river or stream; that is why 
streaming data processing. The performance requirement for 
streaming data processing is you must process data as fast as the data 
flows in, taking into account that because of its endless nature, there are 
no chances to postpone some processing and complete later.


In this type of real-time processing you have to be able to process the 
data continuously, without start-up or clean-up overhead. Streaming 
data processing also requires a way to deal with occasional system 
failures without massive data loss.


You think about this type of real-timing when you say:


• The server information in this data center is monitored in real-time to 
catch problems early.


• Weather conditions are recorded continuously to generate up-to-date 
weather forecast in real-time.


SUMMARY


So you have different meanings of real-time term, and all of them are 
correct. This ambiguity tends some people to use "near real-time" term 
in the sense of any one of the above definitions, maybe aside from sub-
second, to emphasize the fact that something must happen 
"immediately" but we can wait a "moment" for results. Of course both 
"immediately" and "moment" are very fuzzy and imprecise and highly 
dependent on the specific case.
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Very neat summary statement is: respond before you lose the 
customer. This, in some ways, is the best possible way to think about 
real-time when designing any data processing systems. Regardless of 
the level of performance your system has in any given situation, if you 
end up losing the customer, then it’s simply too slow. This may be a 
premise to move up to (more restricted) real-time data processing.


Stream data processing


These days when people say real-time data processing in context of 
data processing, they are most likely referring to streaming data 
processing introduced in previous section. It refers to processing data as 
soon as it is collected, with results available virtually instantaneously. 
The individual event or stream considered in a given time interval is 
generally small in size, but its continuous nature results in very large 
datasets. Because of its nature, stream (real-time) processing is also 
known as online processing.


Why is stream processing needed?


• It is needed to provide the expected value in a strictly specified time 
window.


• Stream processing naturally fit with time series data and detecting 
patterns over time.


• Stream processing let you handle large data and retain only useful 
pieces. 
Sometimes data is huge and it is not even possible to store it. Working 
with streams you can examine a small portion of data and leave only 
what is important to you. You can get rid of data that does not carry 
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important information or aggregate them into more compact form. 
For example, if you observe that temperature sensor returns the same 
value for the last hour, it is enough to store this value only once along 
with information about its validity – timestamp when this value was 
recorded first time and when it was recorded last time.


• Stream processing let us handle large data with reasonable hardware/
software stack. 
With streams you process data as they come in hence spread the 
processing over time. Hence stream processing can work with a lot 
less hardware than batch processing (you have less data to process 
compared to batch processing). With the almost instant flow, systems 
do not require large amounts of data to be stored.


Summary


The following table summarizes the major differences between batch 
and real-time processing:


Characteristics Batch Real-time (stream)

Known as Offline processing Online processing

Type of action Retrospective Reactive

Size of data Large; huge collection of 
records

Small; individual records 
or micro batches of few 
records

Inference based on All at once One by one

Latency Hight Minimal

Use when Processing needs multiple 
passes through full data

Processing can be done 
with a single pass over 
the data or has temporal 
locality
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Persistency Data must be persisted to 
the persistent storage 
before it can be 
processed.

Data is processed in-
memory as it is captured 
before being persisted to 
the disk

Data access Sequential reads/writes Random reads/writes

Setup Easy Hard

Cost Low High

Characteristics Batch Real-time (stream)
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SECTION 5


Map Reduce


No doubt MapReduce is the best known algorithm of batch processing 
type having its roots in divide-and-conquer principle. Putting into 
practice the idea of parallel and distributed computing realized over a 
set of commodity hardware nodes caused big data computing, so far 
reserved only for selected researchers and computer scientist, found its 
way to ordinary people, like you and me.


MapReduce does not require that the input data conform to any 
particular data model. Therefore, it can be used to process schema-less 
datasets. Although in many cases MapReduce returns result much faster 
than traditional algorithms, it is not expected, as all batch processing 
algorithms, to have low latency.


The MapReduce processing engine try to works differently compared to 
the traditional data processing paradigm.


Traditionally, data processing requires moving data from the storage 
node to the processing node that runs the data processing algorithm. 
This approach works fine for "small" datasets. The larger dataset is, the 
higher network bandwidth utilization and high latency you get and this 
in turn means that more time you waste. In consequence, in extreme 
cases, for large amount of the data moving it generates more overhead 
than the actual processing.


In MapReduce, an algorithm instead of the data is moved to 
the nodes that store the data, thereby eliminating the need to move 
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the data first. The real problem with this approach is how to spread your 
data so it will be on correct processing node from the very beginning 
when you start storing them. If this condition cannot be met, the 
algorithm will of course work, but less efficiently because data transfer 
will be necessary. Column families NoSQL databases helps to 
accomplish this.


Note: Sometimes I use the term algorithm referring to MapReduce, but 
it is discussable if it is an algorithm or rather a framework. See 
MapReduce vs classic divide-and-conquer approach section for 
detailed discussion.


At very high level of consideration a single processing run of the 
MapReduce is composed of a map task and a reduce task. Diving into 
details, each task consists of multiple stages:


• map: split, map, [combine], partition;


• reduce: shuffle, sort, reduce.


Suppose, you have a person list and your job is to count how many of 
them falls into age ranges: 0-9 years, 10-19 years, 20-29 years etc.


For simplicity assume the input consist of 10 persons: Anna (12), Bob 
(34), Celine (63), Diana (51), Edmund (55), Fracesco (67), 
Giselle (15), Henry (57), Isabell (32), Jane (39).


SPLIT STAGE


At this stage the input is divided into splits. This will distribute the work 
among all the map nodes. Each split is parsed into its constituent 
records as a key-value pair (K1, V1). The key is usually the ordinal 
position of the record, and the value is the actual record.
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Example: 
For example MapReduce could divide exemplary personal data in three 
splits in the order in which they appear:


• split 1: Anna (12), Bob (34), Celine (63); 
set of pairs: {"anna": 12, "bob": 34, "celine": 63}


• split 2: Diana (51), Edmund (55), Fracesco (67);  
set of pairs: {"diana": 51, "edmund": 55, "francesco": 
67}


• split 3: Giselle (15), Henry (57), Isabell (32), Jane (39); 
set of pairs: {"giselle": 15, "henry": 57, "isabell": 
32, "jane": 39}


MAP STAGE


The map function executes user-defined logic on splits which are the 
output of previous stage. Each split generally contains multiple key-
value pairs, and the mapper is run once for each key-value pair in the 
split. The mapper processes each key-value pair and in result generates 
a new key-value pair as its output (K2, V2). The output key K2 can 
either be the same as the input key K1 or any other serializable user-
defined object. Similarly, the output value V2 can either be the same as 
the input value V1 or any other serializable user-defined object.


When all records of the split have been processed, the output is a list of 
key-value pairs list(K2, V2) where multiple key-value pairs can 
exist for the same key. It should be noted that for an input key-value 
pair (K1, V1), a mapper can generate one key-value pair, can generate 
multiple key-value pairs (demultiplexing), each possibly with different 
key and/or value, or may not produce any output key-value pair 
(filtering).
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Example: 
The mapping process remains the same on all the nodes. Continuing our 
example, in each of the mapper you give a hardcoded value (1) to each of 
the person. The rationale behind giving a hardcoded value equal to 1 is 
that every given person, in itself, will occur once. Next a list of key-value 
pair is created where the key is nothing but the age range and value is 
one. So, for our set of splits you have the following list of a key-value 
pairs: 


• node 1: {"10-19": 1, "30-39": 1, "60-69": 1}


• node 2: {"50-59": 1, "50-59": 1, "60-69": 1}


• node 3: {"10-19": 1, "50-59": 1, "30-39": 1, "30-39": 
1}


COMBINE STAGE


Generally, the output of the map function is handled directly by the 
reduce function. However, map tasks and reduce tasks are mostly run 
over different nodes. This requires moving data between mappers and 
reducers. This data movement can consume a lot of bandwidth and 
directly contributes to processing latency. With larger datasets, the time 
taken to move the data between map and reduce stages can exceed the 
actual processing undertaken by the map and reduce tasks. For this 
reason, the MapReduce engine provides an optional combine function 
that summarizes a mapper’s output before it gets processed by the 
reducer.


A combiner is essentially a function run locally to group a mapper’s 
output on the same node as the mapper. As a combiner you can use a 
reducer function, or you can define separate custom function.
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The MapReduce engine combines all values for a given key from the 
mapper output, creating multiple key-value pairs as input to the 
combiner where the key is not repeated and the value exists as a list of 
all corresponding values for that key. The combiner stage is only an 
optimization stage, and may therefore not even be called by the 
MapReduce engine.


Example: 
First combine combines all values for a given key from the mapper 
output, creating multiple key-value pairs where the key is not repeated 
and the value exists as a list of all corresponding values for that key:


• node 1: {"10-19": [1], "30-39": [1], "60-69": [1]}


• node 2: {"50-59": [1, 1], "60-69": [1]}


• node 3: {"10-19": [1], "50-59": [1], "30-39": [1, 1]}


Next combiner works as a reducer function (see next stage) that locally 
groups a mapper’s output on the same node as the mapper:


• node 1: {"10-19": 1, "30-39": 1, "60-69": 1}


• node 2: {"50-59": 2, "60-69": 1}


• node 3: {"10-19": 1, "50-59": 1, "30-39": 2}


PARTITION STAGE


The output from the previous stage is divided into partitions between 
reducer instances. Although each partition contains multiple key-value 
pairs, all records for a particular key are assigned to the same 
partition. The MapReduce engine guarantees a random and fair 
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distribution between reducers while making sure that all of the same 
keys across multiple mappers end up with the same reducer instance.


Depending on the nature of the job, certain reducers can sometimes 
receive a large number of key-value pairs compared to others. As a 
result of this uneven workload, some reducers will finish earlier than 
others. Overall, this is less efficient and leads to longer job execution 
times than if the work was evenly split across reducers. This can be 
rectified by customizing the partitioning logic in order to guarantee a 
fair distribution of key-value pairs.


Example: 
The output from the previous stage is divided into partitions between 
reducer instances. Although each partition contains multiple key-value 
pairs, the rule is that all records for a particular key are assigned to the 
same partition:


• node 1: {"10-19": 1 -> P1, "30-39": 1 -> P1, "60-69": 
1 -> P3}


• node 2: {"50-59": 2 -> P2, "60-69": 1 -> P3}


• node 3: {"10-19": 1 -> P1, "50-59": 1 -> P2, "30-39": 
2 -> P1}


SHUFFLE AND SORT STAGE


Output from all partitioners is copied across the network to the nodes 
running the reduce task. This is known as shuffling. The list based key-
value output from each partitioner can contain the same key multiple 
times.


Next, the MapReduce engine automatically groups and sorts the key-
value pairs according to the keys so that the output contains a sorted list 
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of all input keys and their values with the same keys appearing together. 
The way in which keys are grouped and sorted can be customized.


This merge creates a single key-value pair per group, where key is the 
group key and the value is the list of all group values.


Example: 
Output from all partitioners is copied across the network to the nodes 
running the reduce task (shuffling):


• partition on node 1: {"10-19": 1, "30-39": 1, "10-19": 
1, "30-39": 2}


• partition on node 2: {"50-59": 2, "50-59": 1}


• partition on node 3: {"60-69": 1, "60-69": 1}


Next, the MapReduce engine automatically groups data on nodes by 
key:


• partition on node 1: {"30-39": 1, "30-39": 2, "10-19": 
1,  "10-19": 1}


• partition on node 2: {"50-59": 2, "50-59": 1}


• partition on node 3: {"60-69": 1, "60-69": 1}


and sorts the key-value pairs according to the keys so that the output 
contains a sorted list of all input keys and their values with the same 
keys appearing together:


• partition on node 1: {"10-19": [1, 1], "30-39": [1, 2]}


• partition on node 2: {"50-59": [2, 1]}


• partition on node 3: {"60-69": [1, 1]}
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REDUCE STAGE


Reduce is the final stage of the reduce task. Depending on the user-
defined logic specified in the reduce function (reducer), the reducer will 
either further summarize its input or will emit the output without 
making any changes. In either case, for each key-value pair that a 
reducer receives, the list of values stored in the value part of the pair is 
processed and another key-value pair is written out.


Example: 
The reducer job is to summarize its input. For each key-value pair that it 
receives, the list of values stored in the value part of the pair is 
processed:


• node 1: {"10-19": 2, "30-39": 3}


• node 2: {"50-59": 3}


• node 3: {"60-69": 2}


Finally the last key-value pair is written out:


"10-19": 2


"30-39": 3


"50-59": 3


"60-69": 2
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MapReduce vs classic divide-and-conquer approach


"Dividing a problem to smaller ones until the individual problems can 
be solved independently and then combining them to answer the 
original question is known as the divide and conquer algorithm design 
technique.


Recently, this approach to solve computational problems especially in 
the domain of very large data sets has been referred to as MapReduce 
rather than divide and conquer.


My question is as follows: Is MapReduce anything more than a 
proprietary framework that relies on the divide and conquer 
approach, or are there details to it that make it unique in some 
respect?"


There are a lot of discussion, starting with the question similar to the 
above, wether is there (conceptual) novelty in MapReduce somewhere, 
or is it just a new implementation of old ideas useful in certain scenarios 
[MR:1-3] to mention only a few examples. MapReduce was hailed as 
revolution of distributed programming and it even got patented [MR:5] 
but there have also been critics [MR:4]. So, is MapReduce something 
new compared to well known divide-and-conquer approach? The 
answers varies – let's see some of them.


• There is no novelty. [...] nothing new in computation, or even 
distributed computing was discovered by MapReduce.


• It's not a super-sophisticated concept, but a very useful piece of 
infrastructure. MapReduce is a framework for implementing divide-
and-conquer algorithms in an extremely scalable way, by 
automatically distributing units-of-work to nodes in an arbitrarily 
large cluster of computers and automatically handling failures of 
individual nodes by redistributing the unit-of-work to another node.
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• If you're asking about the MapReduce architecture, then it is very 
much just a divide and conquer technique. However, any useful 
MapReduce architecture will have mountains of other infrastructure 
in place to efficiently "divide", "conquer", and finally "reduce" the 
problem set. With a large MapReduce deployment (1000's of compute 
nodes) these steps to partition the work, compute something, and 
then finally collect all results is non-trivial. Things like load balancing, 
dead node detection, saving interim state (for long running problems), 
are hard problems by themselves.


• The paradigm is named after Lisp's map() and reduce() functions. 
It was certainly a new idea to make a massively parallel version of map 
and reduce.


• Because Google did it.  There's nothing particularly wrong with it, but 
it isn't particularly novel, either.  People have been doing this kinds of 
parallel processing for decades. 


• MapReduce is more about segregation and aggregation.


• MapReduce is not simply a divide and conquer technique, though it 
looks that way in many examples. In the mapping step you can and 
frequently want to do a one-to-many relation. Thus you're not simply 
dividing into cases.


• MapReduce diverges from most divide and conquer systems in a fairly 
fundamental way, but one that's so simple that many people almost 
miss it. The real genius of it is in tagging the intermediate results. 
 
In a typical (previous) divide and conquer system, you divide the work 
up serially, execute work packets in parallel, and then merge the 
results from that work serially again. 
 
In MapReduce, you divide the work up serially, execute work packets 
in parallel, and tag the results to indicate which results go with which 
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other results. The merging is then serial for all the results with the 
same tag, but can be executed in parallel for results that have different 
tags.


• MapReduce is not divide and conquer. It does not involve the 
repeated application of an algorithm to a smaller subset of the 
previous input. It's a pipeline (a function specified as a composition of 
simpler functions) where pipeline stages are alternating map and 
reduce operations. Different stages can perform different operations. 
 
MapReduce does not break new ground in the theory of computation 
– it does not show a new way of decomposing a problem into simpler 
operations. It does show that particular simpler operations are 
practical for a particular class of problem. 
 
The MapReduce paper's contribution was:


• Evaluating a pipeline of two well understood orthogonal operators 
that can be distributed efficiently and fault-tolerantly on a particular 
problem: creating a text index of large corpus.


• Benchmarking map-reduce on that problem to show how much data 
is transferred between nodes and how latency differences in stages 
affect overall latency.


• Showing how to make the system fault tolerant so machine failures 
during computation can be compensated for automatically.


• Identifying specific useful implementation choices and 
optimizations.


Some of the critiques fall into these classes:


• "Map/reduce does not break new ground in theory of computation." 
True. The original paper's contribution was that these well-
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understood operators with a specific set of optimizations had been 
successfully used to solve real problems more easily and fault-
tolerantly than one-off solutions.


• "This distributed computation doesn't easily decompose into map & 
reduce operations". Fair enough, but many do.


• "A pipeline of n map/reduce stages require latency proportional to the 
number of reduce steps of the pipeline before any results are 
produced." Probably true. The reduce operator does have to receive all 
its input before it can produce a complete output.


• "Map/reduce is overkill for this use-case." Maybe. When engineers 
find a shiny new hammer, they tend to go looking for anything that 
looks like a nail. That doesn't mean that the hammer isn't a well-made 
tool for a certain niche.


• "Map/reduce is a poor replacement for a relational DB." True. If a 
relational DB scales to your data-set then wonderful for you – you 
have options.
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SECTION 6


SCV principle


One of the most important concept related to Big Data processing is 
called the Speed, Consistency and Volume (SCV) principle. If you have 
some basic knowledge about NoSQL concepts, you should have heard 
about the CAP theorem. Whereas the CAP theorem is primarily related 
to distributed data storage, the SCV principle is related to distributed 
data processing. As the CAP theorem states that a distributed data 
storage can be designed to support only two of the three requirements: 
consistency, high availability and partition tolerance, the SCV 
principle states that a distributed data processing system can be 
designed to support only two of the three requirements: speed, 
consistency and volume.


• Speed This refers to how fast the data can be processed once it is 
generated.


• Consistency This refers to the accuracy and the precision of the 
results. In common language both terms are used interchangeably as 
synonyms but they means different things. Results are deemed 
accurate if they are close to the correct value and precise if close to 
each other. For example, a more consistent system may use all present 
data, resulting in greater accuracy and precision as compared to a less 
consistent system that makes use of sampling techniques, which can 
result in lower accuracy with an acceptable level of precision.


• Volume This refers to the amount of data that can be processed.
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NOTE


Accuracy and precision


To illustrate the fundamental difference between accuracy and 

precision, the analogy to a shooting target is often given: 

 

Accurate and precise: Considering the case of a rifle with calibrated 

sighting scope in the hands of a professional marksman with a steady 

hand you will get accuracy and precision.  

 

No accurate and precise: Considering the result for a professional 

marksman using a rifle whose sighting scope is not calibrated we will 

get no accuracy and precision. 

 

Accurate and no precise: Considering the result for an amateur (with a 

shaky hand) using a calibrated rifle we will get accuracy and no 

precision. 

 

No accurate and no precise: Considering the result for an amateur 

shooting an un-calibrated rifle we will get no accuracy and no 

precision.


The SCV principle states that:
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• If speed (S) and consistency (C) are required, it is not possible to 
process high volumes of data (V) because large amounts of data slow 
down data processing.


• If consistency (C) and processing of high volumes of data (V) are 
required, it is not possible to process the data at high speed (S) as 
achieving high speed data processing requires smaller data volumes to 
ensure accuracy and precision.


• If high volume (V) data processing with high speed (S) is required, the 
processed results will not be consistent (C) since high-speed 
processing of large amounts of data limits the number of data you can 
process and may involves sampling the data, which in turn may 
reduce consistency.


In Big Data environments, making the maximum amount of data 
available is mandatory for performing in-depth analysis (as for a 
distributed data storage). Assuming that data (V) loss is unacceptable, 
generally a realtime data analysis system will either be S+V or C+V, 
depending upon whether speed (S) or consistent results (C) is favored. 
If you talk about real-time system than by definition you have S+V and 
consistency (C) will be compromised.
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CHAPTER 7


Message queues


What you will learn:


• Why big data requires its own engineering 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CHAPTER 8


Adoption issues and 
considerations


What you will learn:


• Why big data requires its own engineering 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CHAPTER 9


Do we really need Big Data


What you will learn:


• Why big data requires its own engineering 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CHAPTER 10


xxx


What you will learn:


• Why big data requires its own engineering 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CHAPTER P1


Getting data


You will do:


In this part you will extend your knowledge with information on more 

advanced topics.


You will learn:


• What a structure is and how it differs from class.


• Inheritance with type checking and access control.


• How to handle exceptional situation. 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SECTION 1


Text files


Text files? In XXI century? Are you kidding?


TODO


People forget about this but... It is very important !!!
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SECTION 2


Working with files in 
Python


Text files


TODO


Binary files


TODO


The ability to work with files at the level of reading a single 
line of text or a block of bytes is particularly desirable as you 
should never assume you can read a whole file into memory 
or at least you should be prepared for this uncomfortable 
situation.
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SECTION 3


Working with JSON data 
in Python


Since its inception, JSON has quickly become the de facto standard for 
information exchange replacing in most cases much more verbose XML. 
Python supports JSON natively — it comes with a built-in package 
called json for encoding and decoding JSON data.


The process of writing JSON data to disk is usually called encoding or 
sometimes serialization, while decoding (deserialization) is for reading 
data into memory. In general serialization is any process converting a 
native object to a string so it can be saved on disk or transmitted across 
the network; and conversely deserialization includes any process that 
aims to convert a string to a native object (recreate object based on 
string).


Keep in mind that JSON is a semi-structured format contains 
tags (keys) to separate semantic elements and enforce 
hierarchies of records and fields within the data. Therefore, it 
may be difficult to read JSON file in chunks (which is 
required when available RAM is much smaller than file size), 
especially when its hierarchy is unknown.


Encoding JSON


Imagine you have a python object, for example something like this:
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data = {

  "string": "text",

  "integer": 12,

  "real": 12.34,

  "list": [1, 1.2, "abc"],

  "dictionary": {"k1": "v1", "k2": "v2"}

}


After importing required library:


import json


you can save it with simple instruction:


with open("simple.json", "w") as output_file:

  json.dump(data, output_file)


Open the simple.json file or display its contents with for example 
cat command:


big_data:ch02 fulmanp$ cat simple.json  
{"string": "text", "integer": 12, "real": 12.34, "list": [1, 
1.2, "abc"], "dictionary": {"k1": "v1", "k2": "v2"}}

If for some reason you want to continue using this serialized JSON data 
in your program, you could write it to a native Python str object:


json_string = json.dumps(data)

print(json_string)


big_data:ch02 fulmanp$ python3 test_json.py  
{"string": "text", "integer": 12, "real": 12.34, "list": [1, 
1.2, "abc"], "dictionary": {"k1": "v1", "k2": "v2"}}

JSON is not very sophisticated format so in consequence saving it is not 
highly customizable.
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You can use the indent keyword argument to specify the indentation 
size for nested structures:


with open("simple.json", "w") as output_file:

  json.dump(data, output_file, indent=2)


big_data:ch02 fulmanp$ cat simple.json  
{  
  "string": "text",  
  "integer": 12,  
  "real": 12.34,  
  "list": [  
    1,  
    1.2,  
    "abc"  
  ],  
  "dictionary": {  
    "k1": "v1",  
    "k2": "v2"  
  }  
}

Another formatting option is the separators keyword argument. This 
is a 2-tuple of the separator strings (item_separator, 
key_separator) by default defined as (", ", ": "). If you want to 
save some space, you can use more compact separators with no spaces: 
(",", ":"). Take a look at the sample JSON again to see where these 
separators come into play:


with open("simple.json", "w") as output_file:

  json.dump(data, output_file, separators=(",", ":"))


big_data:ch02 fulmanp$ cat simple.json  
{"string":"text","integer":12,"real":12.34,"list":
[1,1.2,"abc"],"dictionary":{"k1":"v1","k2":"v2"}}

You can sort by key data saved in JSON with sort_keys argument:
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with open("simple.json", "w") as output_file:

  json.dump(data, output_file, indent=2, sort_keys=True)


big_data:ch02 fulmanp$ cat simple.json  
{  
  "dictionary": {  
    "k1": "v1",  
    "k2": "v2"  
  },  
  "integer": 12,  
  "list": [  
    1,  
    1.2,  
    "abc"  
  ],  
  "real": 12.34,  
  "string": "text"  
}

SAVING CUSTOM DATA


Another two optional arguments of dump you can use to serialize 
custom objects — objects that aren’t natively serializable:


• default defines a function that is called for objects that can’t 
otherwise be serialized. It should return a JSON encodable version of 
the object or raise a TypeError. If not specified, TypeError is 
raised.


• cls kwarg defines a custom JSONEncoder subclass (e.g. one that 
overrides the default method to serialize additional types). If not 
specified,  JSONEncoder is used.


Consider the following custom data structures:


class Person:

  def __init__(self, name, address):

    self.name = name

    self.address = address
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class Address:

  def __init__(self, country, city, street, number):

    self.country = country

    self.city = city

    self.street = street

    self.number = number


address = Address("AB", "Cd", "Ef", 12)

person = Person("Abcd", address)


Now you can implement function to translate a custom object Person 
into JSON. Without this you will get an error as in the following 
example:


person_json = json.dumps(person, indent=2)

print(person_json)


[...]  
TypeError: Object of type Person is not JSON serializable

Serializing function can do anything you want and think is needed to 
represent your data in terms of the built-in types json already 
understands. Simply speaking, you translate the more complex object 
into a simpler representation, which the json module can translates into 
JSON. Every time you do this, remember to choose minimum 
representation sufficient to recreate this object. In case of Person 
object this could be:


def encode_person(person):

  if isinstance(person, Person):

    p = {

      "name": person.name,

      "address": {

        "country": person.address.country,

        "city": person.address.city,

        "street": person.address.street,

        "number": person.address.number,

      }

    }

    return p

  else:


2 5 3



    type_name = z.__class__.__name__

    raise TypeError(f"Object of type '{type_name}' is not JSON 
serializable")


Now you can serialize any Person object:


person_json = json.dumps(

  person,

  indent=2,

  default=encode_person 
)

print(person_json)


The other common approach is to subclass the standard JSONEncoder 
and override its default method:


class PersonEncoder(json.JSONEncoder):

  def default(self, person):

    if isinstance(person, Person):

      p = {

        "name": person.name,

        "address": {

          "country": person.address.country,

          "city": person.address.city,

          "street": person.address.street,

          "number": person.address.number,

        }

      }

      return p

    else:

      return super().default(z)


Making the following call, you will get the same result as before:


person_json = json.dumps(

  person,

  indent=2,

  cls=PersonEncoder

)

print(person_json)


Decoding JSON
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TODO


file simple.json :


{  
  "string": "text",  
  "integer": 12,  
  "real": 12.34,  
  "list": [  
    1,  
    1.2,  
    "abc"  
  ],  
  "dictionary": {  
    "k1": "v1",  
    "k2": "v2"  
  }  
}

xxx


with open("simple.json", "r") as input_file:

  data = json.load(input_file)

  print(data["dictionary"]["k2"])


v2

Loading data from JSON string:


json_string = json.dumps(data)

print(json_string)

data = json.loads(json_string)

print(data["dictionary"]["k2"])


{"string": "text", "integer": 12, "real": 12.34, "list": [1, 
1.2, "abc"], "dictionary": {"k1": "v1", "k2": "v2"}}  
v2

LOADING CUSTOM DATA
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Deserializing function


TODO


xxx


def decode_person(dct):

  if "address" in dct:

    address = Address(

      dct["address"]["country"],

      dct["address"]["city"],

      dct["address"]["street"],

      dct["address"]["number"]

    )

    

    return Person(dct["name"], address)

  else:

    return dct

  


person = json.loads(person_json, object_hook = decode_person)

print(person.name)


Abcd

Subclass the standard JSONDecoder:


class PersonDecoder(json.JSONDecoder):

  def __init__(self, *args, **kwargs):

    json.JSONDecoder.__init__(

      self,

      object_hook=self.dict_to_object,

      *args,

      **kwargs

    )

    

  def dict_to_object(self, dct):

    if "address" in dct:

      address = Address(

        dct["address"]["country"],

        dct["address"]["city"],

        dct["address"]["street"],

        dct["address"]["number"]

      )
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      return Person(dct["name"], address)

    else:

      return dct


Making the following call, you will get the same result as before:


person = json.loads(

  person_json,

  cls = PersonDecoder)

print(type(person))

print(person.name)
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SECTION 4


Working with CSV data in 
Python


Although the CSV (Comma Separated Values) format is not a precise 
standard, it became the most common data exchange (import and 
export) format for spreadsheets and databases.


Because of CSV structure, where data are separated by 
delimiter and each "portion" of data takes exactly on line, 
there are no problems with processing files of size much 
greater than available RAM. You can read line by line in loop 
or at worst you can read data field by data field if data stored 
in fields are really huge.


TODO


xxx


importing required library


import csv


xxx


with open("test.csv", "w", newline="") as output_file:

  writer = csv.writer(output_file)

  writer.writerow(["Abc", 100])

  writer.writerow(["Bcd", 200])
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  writer.writerow(["Cde", 300])

  writer.writerow(["Def", 400])


xxx


big_data:ch02 fulmanp$ cat test.csv  
Abc,100  
Bcd,200  
Cde,300  
Def,400

xxx


with open("test.csv", "w", newline="") as output_file:

  writer = csv.writer(output_file, delimiter=";")

  rows = [

    ["Abc", 100],

    ["Bcd", 200],

    ["Cde", 300],

    ["Def", 400]

  ]

  writer.writerows(rows)


xxx


big_data:ch02 fulmanp$ cat test.csv  
Abc;100  
Bcd;200  
Cde;300  
Def;400

xxx


with open("test.csv", newline="") as input_file:

  reader = csv.reader(input_file)

  for row in reader:

    print(*row, sep=",")


xxx
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big_data:ch02 fulmanp$ python3 test_csv.py  
Abc,100  
Bcd,200  
Cde,300  
Def,400

xx


with open("test.csv", "w", newline="") as output_file:

  fieldnames = ["foo_string", "foo_integer"]

  writer = csv.DictWriter(output_file, fieldnames=fieldnames)

  writer.writeheader()

  writer.writerow({"foo_string": "Abc", "foo_integer": 100})

  writer.writerow({"foo_string": "Bcd", "foo_integer": 200})

  writer.writerow({"foo_string": "Cde", "foo_integer": 300})

  writer.writerow({"foo_string": "Def", "foo_integer": 400})


xx


big_data:ch02 fulmanp$ cat test.csv  
foo_string,foo_integer  
Abc,100  
Bcd,200  
Cde,300  
Def,400

xx


with open('test.csv', newline='') as input_file:

  reader = csv.DictReader(input_file)

  for heading in reader.fieldnames:

    print(heading, end=' ')

    

  print('\n----------------------')

    

  for row in reader:

    print("{1},{0}".format(

      row['foo_string'],

      row['foo_integer']

    ))
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xx


big_data:ch02 fulmanp$ python3 test_csv.py  
foo_string foo_integer  
----------------------  
100,Abc  
200,Bcd  
300,Cde  
400,Def

compact


res = [fields for fields in csv.reader(open("test.csv", 
newline=''))]

print(res)


xx


big_data:ch02 fulmanp$ test_csv.py  
[['foo_string', 'foo_integer'], ['Abc', '100'], ['Bcd', '200'], 
['Cde', '300'], ['Def', '400']]
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SECTION 5


Working with regular 
expressions


TODO


Regular expressions simplifies data extraction but requires a 
block of data to be loaded into RAM. In most cases it is not a 
problem as you may assume that size of extracted fields are 
much lower than RAM and you can load data in chunks.


Encoding JSON


TODO
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SECTION 6


Summary


The ability to work with files at the level of reading a single line of text 
or a block of bytes is particularly desirable as working with data sets 
which are big you should never assume you can read a whole 
file into memory or at least you should be prepared for this 
uncomfortable situation.


RULE


Never assume you can read a whole file into memory.


JSON is a semi-structured format contains tags (keys) to separate 
semantic elements and enforce hierarchies of records and fields within 
the data. Therefore, it may be difficult to read JSON file in chunks 
(which is required when available RAM is much smaller than file size), 
especially when its hierarchy is unknown.


CSV is a structured format, where data are separated by delimiter and 
each "portion" of data takes exactly on line, which resembles rows and 
columns like structure. There are no problems with processing files of 
size much greater than available RAM. You can read line by line in loop 
or at worst you can read data field by data field if data stored in fields 
are really huge.


Regular expressions simplifies data extraction but requires a block of 
data to be loaded into RAM. In most cases it is not a problem as you 
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may assume that size of extracted fields are much lower than RAM and 
you can load data in chunks.
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CHAPTER P2


Cleansing, transforming, 
and integrating data


You will do:


In this part you will xxx


You will learn:


• xxx. 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SECTION 1


xxx


TODO Short intro to the topic


cc


204B, (i.e. a size reduction of 62%)
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CHAPTER P3


Multiprocessing


You will do:


In this part you will xxx


You will learn:


• xxx. 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SECTION 1


Log


TODO Short intro to the topic


At the top of log file you should save the checksum of the file for which 
this report is created. This will prevent you from accidentally using your 
log data to a similar but different file (which is not that hard to do).


Keep the scanning log in the form:


{"checksum": {"md5": "123", "sha1": "456"}}  
{"line": 71, "errors": [{"column": 81, "type": "ERROR_1"}]}  
{"line": 72, "errors": [{"column": 82, "type": "ERROR_2"}]}  
{"line": 73, "errors": [{"column": 83, "type": "ERROR_3"}]}  
{"line": 74, "errors": [{"column": 84, "type": "ERROR_4"}]}

Why so? Why not as valid JSON, e.g .:


{  
  "meta": {"checksum": {"md5": "123", "sha1": "456"}},  
  "log": [  
    {"line": 71, "errors": [{"column": 81, "type": "ERROR_1"}]},  
    {"line": 72, "errors": [{"column": 82, "type": "ERROR_2"}]},  
    {"line": 73, "errors": [{"column": 83, "type": "ERROR_3"}]},  
    {"line": 74, "errors": [{"column": 84, "type": "ERROR_4"}]}  
  ]  
}

This allows you to read data line by line without having to read the 
entire log file and put it into memory. Try to load the simplest, not
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